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Abstract

This paper investigates how firms adapt their sourcing of clean and dirty inputs in
response to changes in climate policy. We use information from the European Union’s
Emissions Trading System (EU ETS) and the Carbon Border Adjustment Mechanism
(CBAM) to create a new classification of clean and dirty products based on whether
they are subject to a domestic or a border carbon tax. We then combine this dataset
with French firms’ product-level import data over 2000–2019 and estimate that firms’
propensity to import dirty inputs from non-EU countries increased in the 2010s, reflect-
ing carbon leakage. A heterogeneous firm model is then used to quantify the impact of
changes in firms’ sourcing of clean and dirty inputs given the implementation of a car-
bon tax and a carbon tariff. The simulated ETS carbon tax scenario is able to match
leakage observed in the data and leads to a higher price level and a modest decline in
emissions. The scenario that further includes the CBAM carbon tariff reverses carbon
leakage at the cost of an additional rise in prices. Overall, household welfare declines
because the higher costs associated with the carbon policies outweigh the benefits of
reduced emissions. This result holds even when considering values of the social cost of
carbon up to e1500.
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1 Introduction

A prevailing consensus among economists asserts that establishing a sufficiently high carbon

price serves as a fundamental pillar for tackling climate change.1 The implementation of na-

tional carbon taxes or cap-and-trade systems have been common approaches to achieve higher

carbon prices. The effectiveness of such unilateral policies in decreasing global emissions is

questionable, however, given the ability for firms to shift production and thus emissions

across borders to avoid being taxed, a behavior that is commonly referred to as carbon leak-

age.2 One proposed solution to address this leakage is the implementation of a carbon border

adjustment mechanism (CBAM), which taxes the emissions’ content of imported goods.

European Union (EU) member countries have been at the forefront of such carbon poli-

cies. In particular, the EU implemented a cap-and-trade system, called the EU Emissions

Trading System (ETS) in 2005. This scheme sets a maximum amount of emissions every

year and allows EU firms to trade emissions rights within this limit.3 While this system set

a common price for carbon across EU countries, it did not eliminate the possibility of carbon

leakage outside the union. To eliminate the remaining leakage and incentivize foreign firms

to produce low-carbon intensive goods, the EU thus introduced a CBAM framework in 2023,

which will take hold in 2026.

The questions of whether a cap-and-trade system, such as the EU ETS, creates significant

carbon leakage and what CBAM’s potential impact on both emissions and economic efficiency

will be are still not well understood. In this paper, we take a granular approach to answering

these questions in the context of the EU’s experience. We first build a novel product-level

dataset of French firms’ intermediate imports from different source countries over 2000–2019

to track the impact of the ETS on carbon leakage over time. Crucially, this dataset allows

us to differentiate the importing of clean vs. dirty goods from ETS and non-ETS member

countries. Using the product and spatial dimensions, we can identify carbon leakage from

1For example, 34 out of 43 leading economists surveyed by the Clark Center at Chicago Booth in
March 2021 strongly agree with the following statement: “Sound policy would involve increasing signif-
icantly the currently near-zero price of emissions of carbon dioxide and other greenhouse gases” (https:
//www.kentclarkcenter.org/surveys/pricing-emissions/). In addition, in 2019 more than 3,600 economists,
including 28 Nobel laureates released a statement advocating that a “ ... carbon tax offers the most cost-
effective lever to reduce carbon emissions,” and that it “ ... should increase every year until emissions
reductions goals are met” (https://www.econstatement.org/).

2The term carbon leakage is used in the literature to designate two distinct consequences of unilateral
carbon policies: i) their impact on production costs, which induces a shift in production away from countries
with stringent climate policies (the trade channel), and ii) their impact on global fossil fuel prices through
a decline in domestic demand (the international energy price channel). In this paper, our focus is on the
former trade effect.

3This system complements EU members’ domestic carbon taxes, which vary by country and target mostly
the production of non-tradable goods such as energy production. This production cannot generate carbon
leakage easily as it is difficult to shift consumption of fuel away from national distributors.
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changes in trade patterns both across and within firms. We use these data to show that

French firms shifted their imports of dirty products to non-ETS country suppliers over time,

with the extensive margin playing an important role in this change of sourcing behavior.

Motivated by our empirical findings, we set up a model of endogenous firm sourcing

decisions by extending the work of Antràs, Fort and Tintelnot (2017) to multiple input

types (clean and dirty). This model allows us to embed different layers of carbon policy-

induced costs of production, which are meant to mimic the impacts of both ETS and CBAM

on French firms’ sourcing decisions across countries, as well as between clean and dirty

inputs. Specifically, we model the policy-induced costs as taxes, which take the form of

domestic and foreign iceberg costs, in the sourcing of different inputs. Importantly, the

model allows for firms to adjust their import decisions at both the extensive and intensive

margins. Our firm-level focus on extensive adjustments is motivated by the high costs of

finding new intermediate goods suppliers along with the uncertainty of climate policy. To

the best of our knowledge, such types of climate adaptation costs have not been studied.

We then combine the French firm-level import data with an administrative dataset on

firms’ balance sheets in order to estimate the model’s key parameters and run counterfactual

analysis to study the effect of various carbon tax policies. In doing so, we quantify the

aggregate impact of the ETS on French carbon leakage and household welfare and compare

these outcomes to a system in which the ETS is complemented with a carbon tariff such

as the CBAM. We show that the French carbon leakage resulting from the ETS would be

reversed when adding the CBAM since domestic firms increase their propensity to source

from EU suppliers, who on average have lower emission intensities than non-ETS producers.

Both policies lead to a fall in emissions embedded in French firms’ intermediate goods used

in production, but at a cost of higher prices faced by domestic households. On net, both the

ETS and the CBAM lead to a fall in domestic welfare, as the associated rise in prices from

these policies outweigh the utility gain households obtain from the fall in emissions.

An important contribution of this paper is the construction of a new product-level dataset

that defines clean vs. dirty goods. Our methodology differs from common approaches taken

in the literature that either rely on emissions data to measure a sector’s or firm’s exposure to

environmental policies, or comparing the impact of a policy on regulated vs. non-regulated

firms. We instead define clean vs. dirty goods based on which products are subject to an

environmental policy rather than the emissions generated in production. The definition of

a type of good leverages information about the actual scope of the European policies. The

EU ETS applies to several sectors for all EU member states plus the European Free Trade

Association countries (Iceland, Liechtenstein and Norway). The sectoral coverage is used to
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define a list of dirty inputs.4 We then compare the geographic structure of import sourcing

for these dirty inputs to a control group composed of the remaining set of clean inputs. By

focusing on firms’ input usage, we capture the indirect impact of a policy on downstream

customer firms. Further, a key and novel benefit to our approach is that it allows us to

capture the input mix across types of goods within a firm, using a granular approach to

differentiate clean and dirty inputs.

The first empirical result we document is that, relative to clean imports, the import

share of dirty products that a French manufacturing firm sources from outside of the EU

has increased after the implementation of the ETS. In 2019, the relative share of these

imports had increased by 10 to 20% relative to 2004 values.5 The magnitude of this change

is economically meaningful and accumulates over time as the impact of the ETS becomes

increasingly binding. Second, we show that the reshuffling of import portfolios is in part

driven by the extensive margin, i.e., French firms starting to import dirty products from new

suppliers outside of the ETS zone.

Our quantitative analysis takes into account this extensive margin of sourcing using a

model built on the seminal contribution of Antràs et al. (2017). We extend their framework

to include the following additional ingredients that are necessary for the policy analysis we

wish to examine: (i) multiple types of intermediate goods, so that firms source both clean

and dirty inputs, (ii) country- and input-specific carbon taxes, and (iii) carbon damages

incorporated into households’ utility. This framework allows us to think about the trade and

welfare consequences of environmental policies. Importantly, the model captures adjustments

in firm-level sourcing decisions, both at the intensive and extensive margins.

We first estimate key model parameters using pre-ETS firm-level and firm×product-

type×source country imports from 50 countries, within and outside the EU ETS. We extend

the approach of Antràs et al. (2017) in estimating the fixed cost a firm faces in sourcing

dirty products from a given country to allow for the existence of environmental policies

in the country.6 We then borrow other relevant parameters from the literature and apply

4The sectoral scope of the ETS has somewhat evolved over time but mostly concerns electricity, heat
generation and energy-intensive manufacturing sectors (oil refineries, steel works, and production of iron,
aluminium, metals, cement, lime, glass, ceramics, pulp, paper, cardboard, acids and bulk organic chemicals).

5The increased import share is observed when focusing on French firms’ sourcing from outside of the ETS
zone using the sourcing of clean inputs from the same countries as controls. We also confirm the qualitative
results in a difference-in-differences model that compares dirty inputs sourced from outside versus within the
ETS zone. The former regression is our preferred specification because changes in the declaration threshold
for intra-EU imports blurs the comparison of intra- and extra-ETS sourcing strategies during the period
under study, as EU and ETS countries largely overlap.

6Furthermore, the estimation for France rather than the U.S. also forces us to adjust the empirical
specification to account for the differential impact of geography on the fixed cost of sourcing given high
intra-EU trade and France’s relative closeness to many EU countries.
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simulated methods of moments (SMM) to estimate the remaining structural parameters for

each type of inputs. The model is able to match the observed trading patterns in the data

fairly well along the lines of Antràs et al. (2017).

Given the simulated model parameters, we run policy experiments that allow for the

imposition of a carbon tax on dirty inputs sourced from within the EU ETS, including

domestically produced goods. We then apply an equally-sized carbon tax to dirty inputs

from non-ETS source countries, as detailed in the CBAM legislation. In order to mimic the

actual incidence of taxation, we compute carbon tax rates that incorporate both domestic

and foreign input-output linkages in the production of the input that is used in domestic

final goods production.7 Furthermore, we also use data on sector×country-level of emissions

to calculate tax rates, recognizing that sectors and countries are not taxed uniformly due to

varying emissions intensities in the production of one unit of output.

Our baseline quantitative exercise, which applies a tax level of e100 per ton of CO2,

yields several interesting results. The ETS-only simulation produces statistics of carbon

leakage via firms’ adaptation at the intensive and extensive margins that are comparable

to those calculated in the data. More specifically, we replicate the motivating stylized facts

within simulated firm-level data. The reshuffling of import portfolios towards dirty produc-

ers outside of the ETS zone is comparable in the model and in the data, but the model

underestimates adjustments at the extensive margin. The choice of a e100 tax is arguably

conservative, as it may understate the effective tax that firms internalize given their expec-

tations of higher carbon prices and the system becoming more stringent over time. The

model-based regressions also explore the role of firm heterogeneity in driving leakage. Car-

bon leakage is entirely concentrated in the top quartile of the distribution. In relative terms,

the most affected firms are those displaying intermediate productivities, as these firms lie

close to the productivity cutoff for imports in the baseline model without carbon taxes.

On aggregate and holding total French expenditures constant, the ETS-system simulation

leads to a relatively small fall in the emission-content of inputs sourced by French firms,

−1.84M of tons relative to a no-tax equilibrium. This result is driven by supply chain

reallocation across two margins: while the economy experiences carbon leakage as French

firms substitute to non-ETS dirty producers, the tax also leads domestic firms to substitute

towards cleaner inputs. This fall in emissions coincides with a rise in input costs and thus

the price level of the composite manufactured final good. The price increase is modest, at

0.05% relative to a no-tax equilibrium. Applying the utility function of Shapiro (2021) which

considers emissions damages, we still find that welfare decreases slightly, −0.005% relative

7An alternative would have been to formally model firm or sectoral input-output linkages, but this would
have substantially increased the degree of complexity in solving the model.
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to a no-tax equilibrium, as the price rise dominates the utility gain from lower emissions.

Next, turning to the baseline ETS+CBAM simulation, the application of the e100 bor-

der tax in addition to the ETS one allows us to conduct several exercises. We first use the

simulated-firm data to run the reduced-form regressions. The estimated coefficients for the

import share and import probability specifications flip signs relative to the ETS-only regres-

sions and are significant, indicating that leakage is reversed. Looking at the geographical

distribution driving this change in leakage, we see that the bulk of the fall in imports induced

by CBAM is driven by French firms decreasing their imports from Russia, China and India.8

Meanwhile, high input emission ETS-countries, such as Bulgaria, Romania and Poland, now

increase their exports slightly to France relative to an ETS-only equilibrium. However, this

increase in imports, relative to the ETS-only system, is not sufficient to reverse the fall of

France’s imports from these countries relative to a no-tax equilibrium.

Across countries, the addition of the CBAM to the ETS decreases the emission-content

of inputs sourced by French firms to −6.94M tons relative to a no-tax equilibrium, which

is roughly four times larger than the decline with only the ETS. This fall reflects a large

decrease in the use of dirty inputs overall as leakage is reversed. The fall in emissions comes

at a cost, however, as the price index now increases by 0.54%. Again, the real consumption

effect dominates the utility gains associated with lower global emissions and welfare decreases

(−0.0501%). Rebating tax revenues to households generates positive welfare effects.

Related literature. We contribute to several strands of the literature. First, our work

contributes to the literature that studies the impact of the EU ETS on firms, such as Joltreau

and Sommerfeld (2019), Borghesi et al. (2020), Dechezleprêtre, Gennaioli, Martin, Muûls

and Stoerk (2022), Barrows, Calel, Jégard and Ollivier (2024), Colmer, Martin, Muûls and

Wagner (2024), Känzig, Marenz and Olbert (2024). We differ from these studies by focusing

on manufacturing firms’ sourcing of intermediate goods, rather than just ETS-regulated

firms or multinationals, and by drilling down to the product level to study the potential

for leakage. Furthermore, building on our new empirical stylized facts, we provide a model

of firms’ sourcing decisions that can be taken to the data and be used to provide policy

analysis.

It is useful to compare our results with those of Colmer et al. (2024) who also use

French micro data. Those authors provide evidence that ETS-regulated firms were largely

unaffected by the ETS given their ability to innovate. One of their findings is that ETS-

regulated firms’ imports did not change relative to a control group of similar non-regulated

8In our partial equilibrium model, total sales and hence total imports are fixed across simulations. Hence,
a decrease in imports from a country in a given counterfactual is equivalent to a lower share of imports coming
from this country.
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firms, which the authors interpret as evidence against leakage. Our analysis complements

their work on several grounds. First, we focus our attention to carbon leakage, rather than

other adjustment margins such as innovation. In doing so, we account for the possibility

that carbon leakage may extend beyond regulated firms to downstream industries. For

this reason, our sample is not restricted to having only ETS firms as the treatment group.

We instead focus on a set of manufacturing firms that use dirty (i.e., regulated) inputs in

production.9 Beyond the difference in coverage, we also develop a novel empirical strategy to

identify carbon leakage, which leverages product-level data rather than total firm imports.

Based on these data, we can compare the geographic structure of individual firms’ imports of

dirty inputs, and in relative terms with the same firms’ purchases of clean (i.e., unregulated)

inputs. Therefore, we present complementary evidence to the innovation channel on how

manufacturing firms adapt to carbon policy.

Our focus on the impact of the ETS on firms located downstream from the regulated

sectors relates to literature studying the impact of carbon policies on production networks

(e.g., ???). In recent work, ? use data on Beligium firm-to-firm input-output relationships

to estimate the spillover effects of the ETS on customer and supplier of regulated firms.

The authors study the spillover effects of variables such as value added, employment, or

innovation, but omit firms’ import behavior as a channel for adaptation.

The empirical results add to the literature estimating the magnitude of the effect of

climate policies on actual trade. A number of papers test for a link between net trade flows

and the stringency of pollution control measures using US data on local pollution regulations.

In their survey of the literature, Dechezleprêtre and Sato (2017) conclude that there is some

evidence in favor of the pollution haven hypothesis. Aldy and Pizer (2015) and Sato and

Dechezleprêtre (2015) estimate the elasticity of net imports to energy prices using panel data

and find small positive elasticities.10 A few papers have tested the carbon leakage hypothesis

using the EU ETS as a natural experiment. For instance, Naegele and Zaklan (2019) use

product-level trade data over 2004–2011 and do not find any significant carbon leakage. In

our data, carbon leakage is not found to be significant before the early 2010s.

Our findings also complement those in the nascent literature that studies how firms adapt

their supply chain and production decisions in response to climate shocks. Balboni, Boehm

and Waseem (2024), Blaum, Esposito and Heise (2024), Castro-Vincenzi (2024), Castro-

Vincenzi, Khanna, Morales and Pandalai-Nayar (2024) use granular data to study the impact

of weather shocks on firms and production networks. Those papers find that firms’ sourcing

9We show in a robustness check that our findings do not hold when focusing only on ETS firms.
10In Sato and Dechezleprêtre (2015), a e40-65/ton CO2 price of carbon in the EU ETS would increase

Europe’s imports from the rest of the world by only 0.04%.
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decisions of intermediate goods are impacted by climate shocks, but that firms may adapt by

alternating between suppliers. Further, such types of shocks may propagate throughout the

production network as originally shown by ? and ?. Our study complements these papers

by showing the importance of firms’ sourcing adaptation to climate policy and quantifying

the impact of these changes on emissions and household welfare.

Our modeling approach is in the spirit of recent contributions in the quantitative trade

and environmental literature, such as Shapiro (2016, 2021) and Bellora and Fontagné (2023),

and other work discussed in the review by Copeland, Shapiro and Taylor (2022).11 However,

a notable difference in our approach is the focus on the firm and product levels rather than the

sector-level, which is the most common level of aggregation analyzed in the literature. This

difference in methodology has pros and cons. On the one hand, given data and computation

limitations, we are constrained to performing the analysis for only one country (France in

our case), and thus cannot take into account the full global general equilibrium adjustment

of trade and production. Therefore, our analysis is only partial equilibrium in this sense and

cannot be used to make any inference on the impact of policy on global emissions. On the

other hand, by focusing on the firm and product levels, we are able to perform analysis that

highlights potentially important mechanisms that firms can use to adapt to climate policy.

Furthermore, by using granular data, we are also able to gauge potential future carbon

leakage via extensive margin adjustments that would not be possible using sector-level data.

Finally, while our work remains silent on the global implications of climate policy, we

hope to provide a granular view of the impact of environmental policy, both within a country

and at the border, that can be used to inform theoretical models that evaluate such policies

like the contributions of Nordhaus (2015), Larch and Wanner (2017), Weisbach, Kortum,

Wang and Yao (2022), and Farrokhi and Lashkaripour (2024).

Section 2 describes the construction of the new dataset. Section 3 provides evidence

on firms’ sourcing choices of clean and dirty products from within and outside of the EU

ETS. Section 4 presents the theoretical framework that is used to model firms’ domestic and

foreign sourcing decisions. Section 5 estimates the model, and Section 6 provides quantitative

evidence on the impact of implementing the ETS and then the CBAM on firms sourcing

decisions, emissions and welfare. Section 7 concludes.

11See also Branger and Quirion (2014) and Carbone and Rivers (2017), who survey results recovered from
a wide range of ex-ante analyses using computable general equilibrium models.
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2 Data

A key aspect of our analysis is the identification of firms’ sourcing of clean and dirty inputs

from home and abroad. Rather than relying on the emissions content of goods for this

identification, we use information from the ETS and CBAM to define “dirty” goods by

the actual coverage of these policies. This methodology follows several steps and relies

on information at the product, firm and sector levels.12 In this section, we sketch the

main approaches taken in the construction of this new dataset, with details relegated to

Appendix A.

2.1 Defining clean and dirty products

We use information from the EU Transaction Log (EUTL) to recover a list of regulated

sectors under the ETS.13 We complement these data with information from the European

Commission on the list of products that will be covered by the CBAM.14 We use these two

datasets to create a list of dirty products as follows.

First, we use the list of activities covered by the ETS scheme and manually map it

to a list of HS-classified products. To be precise, an “activity,” such as the production

of glassware, can be thought of as a “sector” of production. While the classification of

activities is internal to the ETS system, the mapping between ETS sectors and HS products

is relatively straightforward (see Table C.1). For example, the ETS covers firms that refine

mineral oil (activity 21 in the ETS classification), so we categorize as dirty all products

starting with 27 in the HS categorization (Mineral fuels, mineral oils and products of their

distillation). Second, we utilize the CBAM product list to directly identify dirty products

and then use these data to supplement the ETS list of dirty products (see Table C.2).

This manual approach may introduce measure error and not capture the true dirtiness of

sourced intermediates as measured by their emissions, which is the common metric used in

the literature. However, two factors help to assuage these concerns. First, there is substantial

overlap of products that are classified as dirty using the ETS classification approach and the

CBAM list of products. Second, while the delineation of goods into dirty and clean sets is

legislation-based rather than emissions-based, the ETS and CBAM cover the most heavily

polluted sectors according to their emissions, so the differential in emissions between clean

12We will use the words “product” and “good” interchangeably in what follows. The use of product follows
from the classification of goods in the import data that we use.

13See https://www.euets.info/ for a link to the underlying dataset.
14See Regulation (EU) 2023/956 of the European Parliament and of the Council of 10 May 2023 establishing

a carbon border adjustment mechanism. The products are defined at the the Combined Nomenclature (CN)
level, which is an 8-digit classification of goods in the European Union, whose first 6 digits align with the
Harmonized System (HS) used internationally for categorizing products.
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and dirty products should also be reflected in our approach. Finally, a further benefit of

our approach is that defining dirty products based on policies rather than based on their

emissions content avoids erroneously classifying products as dirty when they are not actually

taxed by either ETS or CBAM. Further details about the classification of clean and dirty

goods can be found in Appendix A.1, which includes the prevalence of dirty goods across

HS categories in Table C.3.

2.2 Firm-level variables

Using the above categorization of HS products, we can first leverage firm-level import data

and run the reduced-form regressions. Our main source of information is the customs dataset,

which contains import flows by firm, origin country and product category, from 2000 to

2019.15 Import flows are aggregated at the annual level. Origin countries are divided into

ETS and non-ETS countries and product categories into clean and dirty inputs, based on the

actual coverage of ETS. The sample of firms is restricted to 44 dirty-intensive manufacturing

sectors, using information recovered from the 2011 INSEE input-output (IO) table.16 Finally,

our empirical analysis focuses on a subset of firms’ core inputs. The purpose of the restriction

is to avoid including in the treatment or the control groups product categories that are

either marginal in a firm’s intermediate usage, or purchased occasionally.17 To this aim, we

first remove imports of capital goods. We then use the IO table to identify the list of the

most important upstream sectors for each downstream industry, using a 10% intermediate

consumption threshold. Then given a mapping between products and NAF sectors, we are

able to identify the set of core inputs for each sector, and thus each firm in these sectors.

See Appendix A.3 for further details.

The quantitative model requires additional information on firms. We use 2004 (pre-ETS)

information from the administrative firm-level balance sheet and income statement dataset

from INSEE-FICUS, which provides information on firms’ total use of intermediate goods

and production. The model requires information on the dirtiness intensity of firms’ input

purchases. In the absence of firm-level information, we match the data with the detailed

sector-level IO dataset described in the previous paragraph, and apply the sector-specific

15See Bergounhon, Lenoir and Mejean (2018) for a thorough description of the dataset.
16We first establish a mapping between the 138 sectors composing the French IO table and the list of

ETS sectors listed in Table C.1 to recover a list of dirty-producing sectors. We then use the IO table to
categorize dirty-intensive input-use sectors. The analysis is restricted to manufacturing sectors relying on
dirty-producing sectors for at least 10% of their inputs. See details in Appendix A.2.

17The restriction is especially useful once we balance the panel in the firm×product×country dimension.
In doing so, we expand the dataset significantly, since every product×country pair that is observed once in
a firm’s portfolio is considered a sourcing option in every other year. Restricting the dataset to the firm’s
core products avoids inflating the sample with too many zeros.
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dirtiness intensity to firm-level input purchases. We can then use the customs import data

for 2004 to determine the mix of domestic and foreign inputs used by French firms, for each

input type (see Appendix A.4). This yields a 2004 dataset which will be used to calibrate

the model, in which we have, at the firm level, the share of input purchases by input type

and by origin country, including domestic products, as well as total sales.

3 Motivating Facts

In this section, we explore the dynamics of French firms’ imports before and after the intro-

duction of ETS. We are interested in exploring the time variation of potential leakage since

adjustments to the ETS were made over three phases (Phase 1: 2005–08, Phase 2: 2009–12,

Phase 3: 2013–2020) after its announcement in 2003.18 Moreover, the system has not been

binding throughout its history given different institutional features of the ETS. In particular,

the total amount of allowances issued exceeded emissions during Phase 1, and the price of

allowances actually fell to zero in 2007 (see Figure D.2). Phase 2 coincided with the first

commitment period of the Kyoto Protocol, where the countries in the EU ETS had concrete

emissions reduction targets to meet. The cap on allowances was reduced, based on actual

emissions, and the penalty for non-compliance increased. The proportion of free allowances

was still high however, around 90%. This changed during Phase 3, when auctioning became

the default method for allocating allowances. We next explore how French manufacturing

imports adjusted to these phases, first at the macro and then the micro level.

3.1 Aggregate statistics

We first present aggregate evidence on French imports using our newly constructed dataset.

To foreshadow the micro regressions estimated below, we report aggregated import statistics

based on various “treatment” and “control” groups. We aggregate the data into two separate

dimensions to give some insight on patterns of leakage of French firms dirty inputs. Figure 1

presents these statistics for the share in overall imports in panel (a) and the probability of

sourcing from a given supplier (i.e., the extensive margin) in panel (b).

The plots are constructed using the same data sample as used in our regressions below.

The sample is first balanced in the firm×product×source country dimension, which amounts

to assuming that an input sourced by a firm from a given country at some point between

2000 and 2019 could have been sourced from there at any other period. We then create a

dummy variable equal to one in years when the product is actually sourced from the supplier

18The first ideas on the design of the EU ETS were presented in a green paper from the European
Commission in March 2000.
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Figure 1. Aggregate import shares and probability of sourcing from a new supplier market:
control vs. treatment groups
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classifies products as either clean or dirty. Panel (a) presents import shares and panel (b) presents the
probability of sourcing from a given sourcing country (extensive margin). Each panel plots the treated
group, ‘non-ETS Dirty’, vs. both control groups: (i) ‘non-ETS Clean’ or (ii) ‘ETS-Dirty’.

country. Averaging across firms, products and countries within each product type (clean or

dirty) × country group (ETS country or not) at the yearly level gives a time-series of the

import probability. As for the import share variable, imports are summed across firms,

products and countries within each product type (clean or dirty) × country group (ETS

country or not) at the yearly level. Taking the ratio of these values over total imports yields

the aggregate import share. In both panels, we begin plotting the data five years prior to

the initiation of the ETS to check for potential pre-trends in the aggregate import data that

might contaminate our regressions.

The dirty import share from non-ETS countries, the treated group,19 is plotted in panel

(a) and depicted by the dark blue circles. The share increases over time, but the series

is volatile. The first control group, the clean import share from non-ETS countries (light

19We refer to non-ETS countries as being “treated” even though the ETS carbon policy is not applied to
them. The reason that we do this is because our measure of the impact of the policy is carbon leakage via
French imports from non-ETS countries. Thus, these countries should in theory benefit from this leakage.
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blue diamonds) exhibits a less volatile upward trend. The share of non-ETS dirty imported

goods is always larger than its clean counterpart, but this difference has fallen over time. The

second control group, the dirty import share from ETS countries (grey triangles) appears to

be falling over time relative to the treated group’s share.

Panel (b) next plots the probability of importing from a particular source country for

the treated and two control groups. The probability of a firm importing a product from a

non-ETS source country has increased over time for both clean and dirty products, though

the rate of increase has been stronger in recent years for dirty inputs. Turning to comparing

the treated group to the second control group, we see a marked difference in the dynamics of

the extensive margin. While the probability of sourcing a dirty product from ETS member

countries has not changed greatly over time, we do see a substantial increase in the extensive

margin of importing dirty products from non-ETS countries, where now a firm appears to be

equally likely to source a dirty product from within or outside the ETS. However, it should be

noted that these relative trends are somewhat biased by a change in the declaration threshold

imposed on French firms on their intra-EU imports. In 2011, the declaration threshold

increased from 150 to 460 thousands of euros.20 We take into account this discontinuity in

our regression strategy below.21

3.2 Regression evidence

We next test for how French firms’ sourcing decisions changed over time by exploiting the

granular dataset we have constructed, which allows us to control for a host of potential

confounding factors using a rich array of fixed effects. This estimation strategy allows us

to drill down to within-firm variation over time at the product level, while controlling for

potential trends such as those depicted in Figure 1.

Throughout the analysis, we remain flexible on the timing of firm-level adjustments. As

sourcing decisions are associated with important investment flows, carbon leakage may be

observed in periods in which the carbon price is not binding if firms anticipate that it will

become binding in the future. We use a difference-in-differences model that can be generally

written as:

yfpit = exp

[
15∑

τ=−4

βτ1 (i /∈ ETS)1 (p ∈ Dirty)1 (t = τ) +X′
fpitθ + εfpit

]
, (1)

where yfpit is either the share of product p sourced from country i in the firm’s overall

imports at time t or a dummy variable for whether the firm imports product p from country

20The declaration threshold is defined over annual imports across all EU member states, which constitute
the majority of ETS countries.

21The other discontinuity, observed in all series, corresponds to the trade collapse of 2009.

12



Figure 2. Evolution of firm-level imports from non-ETS countries: Dirty vs. Clean inputs
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Notes: This figure shows the point estimates recovered from the estimation of equation (1), using 2005 as the
first “treatment” date. The treatment group is composed of import flows on dirty inputs sourced in non-ETS
countries. The control group covers clean inputs imports from non-ETS countries. The equation controls
for product×country and year fixed effects. Standard errors are clustered in the product×country×year
dimension. The confidence intervals are defined at the 95% level. The blue areas correspond to Phases 1
and 3 of ETS.

i in year t. While the import share is targeted in the model developed below, studying the

probability of importing allows us to focus on sourcing adjustments at the extensive margin.

Note that the notation 1() is used for dummy variables in (1), where 1 (i /∈ ETS) is a dummy

variable which equals one if i is not an ETS member country, 1 (p ∈ Dirty) identifies dirty

products, and 1 (t = τ) is equal to one for trade flows observed at time τ . Xfpit controls

for all necessary additional interaction terms as well as fixed effects. As explained in the

previous section, the control group for this regression can be composed of either clean inputs

sourced from non-ETS countries or dirty inputs sourced from ETS countries, with the former

being our preferred control group due to changes in the declaration threshold for intra-EU

imports in 2011.22 Finally, note that regression (1) is run on a balanced panel in which

any product×country pair that the firm eventually imports from is considered a potential

sourcing option throughout the estimation period. An estimated βτ > 0 for τ > 0 implies

that there is some carbon leakage.

We start with a specification that solely controls for product×country and year fixed

effects, thus identifying coefficients within and between manufacturing firms. Results are

22We also tried exploiting a triple interaction regression specification in which we compared the dynamics
of dirty versus clean products in non-ETS versus ETS countries. The analysis was not fruitful since the data
exhibit a severe pre-trend that is driven by the marked decline in imports of clean inputs sourced from ETS
member countries in the early 2000s.
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summarized in Figure 2, in which we report the coefficients estimated on the interaction

between the treatment and each year before and after 2004, i.e., before and after the in-

troduction of the ETS. Following Silva and Tenreyro (2006), equation (1) is estimated by

Poisson pseudo-maximum-likelihood (PPML) so that the exponential of the coefficients are

interpreted as the expected ratio of the left-hand-side variable, for dirty relative to clean

inputs.

Consider first panel (a) which compares import shares across countries and products.

Results point to an upward trend in the relative share of dirty inputs sourced from non-

ETS countries. While the trend is slightly negative before the ETS, it then reverses, with

coefficients being significantly different from zero from ETS Phase 2 onwards. In 2019, the

import share of dirty inputs sourced from non-ETS countries had increased by 15% relative

to the share of clean inputs sourced from the same area.

Whereas panel (a) studies the evolution of a firm’s import portfolio, panel (b) shows

that this evolution is in part driven by extensive margin adjustments, namely an increasing

propensity for French firms to source their dirty inputs from non-ETS countries. Here, the

post-ETS positive trend is even more pronounced and the difference is already significant

during the first phase of the ETS.23

Table 1 next presents estimation results for regression (1) using various sets of fixed effects

as controls. To simplify, coefficients on the treatment effects are constrained to equality

within each phase of ETS, with 2000–2004 used as reference. Panel (a) presents results for the

import share, while panel (b) focuses on the extensive margin of imports. Moving from left

to right, we increase the array of fixed effects included, first using product×country and year

effects as in Figure 2 (column (1)). From column (2), we restrict our attention to variation

happening within a firm, using firm×product×country fixed effects. In columns (3)-(5), we

further control for time-varying confounding factors using country×year and/or sector×year

fixed effects. The most impactful set of fixed effects encompass the sectoral controls, which

halves the coefficients of interest. Even in the most demanding specification of column (5),

we recover significantly positive and increasing estimated coefficients, consistent with carbon

leakage at the firm-level.

In column (6), we further control for dynamic adjustments that are differentiated across

two groups of firms, namely ETS-regulated and ETS-non regulated firms. The results from

this specification are interesting to contrast with others in the literature, such as Colmer

et al. (2024) who focus on French firms that are regulated under ETS and who do not

23In Figure D.3, we show that these results are robust to controlling for heterogeneous treatment effects
following de Chaisemartin and D’Haultfœuille (2020). Note that their estimator uses a linear model which
means that the coefficients must be interpreted relative to the average outcome variable. In 2019, the average
import share (resp. import probability) of clean inputs from non-ETS countries is 1.6% (resp. 18%).
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Table 1. Firm-product-level evidence on carbon leakage, Imports from non-ETS countries:
Dirty vs. Clean inputs

(1) (2) (3) (4) (5) (6)

Panel (a) Import Share
Dirty product × Non-ETS
× ETS Phase 1 0.056∗∗ 0.085∗∗∗ 0.159∗∗∗ 0.050 0.083∗∗ 0.083∗∗∗

(0.025) (0.024) (0.024) (0.037) (0.035) (0.024)
× ETS Phase 2 0.109∗∗∗ 0.169∗∗∗ 0.276∗∗∗ 0.066∗∗ 0.119∗∗∗ 0.174∗∗∗

(0.021) (0.021) (0.021) (0.032) (0.030) (0.021)
× ETS Phase 3 0.161∗∗∗ 0.268∗∗∗ 0.359∗∗∗ 0.067∗∗ 0.133∗∗∗ 0.277∗∗∗

(0.021) (0.021) (0.020) (0.031) (0.029) (0.021)
Pseudo R2 .162 .384 .388 .390 .390 .384

Panel (b) Import Probability
Dirty product × Non-ETS
× ETS Phase 1 0.024∗ 0.018 0.043∗∗∗ 0.031∗ 0.030∗ 0.017

(0.013) (0.013) (0.012) (0.018) (0.018) (0.013)
× ETS Phase 2 0.079∗∗∗ 0.078∗∗∗ 0.097∗∗∗ 0.082∗∗∗ 0.076∗∗∗ 0.091∗∗∗

(0.011) (0.011) (0.010) (0.015) (0.015) (0.011)
× ETS Phase 3 0.181∗∗∗ 0.183∗∗∗ 0.141∗∗∗ 0.074∗∗∗ 0.072∗∗∗ 0.205∗∗∗

(0.011) (0.011) (0.010) (0.015) (0.015) (0.011)
Pseudo R2 .044 .158 .166 .161 .169 .158

Observations 7,553,888
# Firms 27,240
Control group Non-ETS Clean products
Fixed effects pc,t fpc,t fpc,ct fpc,st fpc,ct,st fpc,ETSt

Notes: This table presents the estimated β for regression (1) using various sets of fixed effects. The
treatment effects are constrained to equality within each phase of ETS. f, p, c, s and t respectively stand
for a firm, the imported product, the sourcing country, the sector of the firm and the time period. The last
column controls for yearly dummies, interacted with a variable identifying firms that are regulated under
the ETS system and those that are not (“ETSt”). Standard errors are clustered in the product×source
country×year dimension. (*,**,***) indicates significance at the (10%, 5%, 1%) level.

find evidence of leakage. The authors argue that their finding is driven by regulated firms

adjusting to the ETS by innovating. The ETS×year fixed effects in column (6) absorbs the

average increase in innovation activities that ETS-regulated firms perform and these controls

do not affect our main results. Perhaps more importantly, however, is that our estimation

sample is quite different than Colmer et al.’s. The vast majority of firms in our estimation
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Figure 3. Evolution of firm-level imports of dirty inputs: Non-ETS vs. ETS origin countries
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Notes: This figure shows the point estimates recovered from the estimation of equation (1), using 2005
as the first “treatment” date. The treatment group is composed of imports flows on dirty inputs sourced
in non-ETS countries, with sourcing of dirty inputs from ETS countries taken as control. The equation
controls for product×country and year fixed effects, as well as a dummy that is equal to 1 from 2011 for
intra-European flows. Because the later control is collinear with the treatment effects after 2011, the point
estimates recovered from 2012 to 2019 are defined in relative terms with respect to their 2011 counterpart.
Standard errors are clustered in the product×country×year dimension. The confidence intervals are defined
at the 95% level. The blue areas correspond to Phases 1 and 3 of ETS.

sample (26,900 out of 27,240) are not regulated under ETS. Our empirical strategy instead

accounts for the possibility that carbon leakage may be indirect. Firms that are not directly

exposed to the ETS but purchase inputs that are produced by regulated firms may switch to

non-ETS sourcing countries as a consequence of the price of their dirty inputs increasing.24

As explained in Section 3.1, evidence of carbon leakage could in principle be recovered

from the comparison of dirty input sourcing from non-ETS versus ETS source countries.

Unfortunately, the change in the declaration threshold for intra-EU imports involves an

additional difficulty, as this break in the data shifts all the treatment effects after 2011.25

In Figure 3, we control for this break, and thus estimate the evolution of import shares and

import probabilities, between 2005 and 2010, relative to 2004, and between 2012 and 2019,

relative to 2011.26 Results confirm the trends in Figure 2 despite the estimation sample and

24Figure D.4 confirms that our evidence of carbon leakage is driven by firms that are not regulated under
the ETS. If anything, the impact on ETS firms goes in the opposite direction. The import probability of
dirty inputs sourced from non-ETS countries seems to decrease during Phase 3 of the ETS.

25See evidence for this shift in Figure D.5. The positive shift in import probabilities is mechanical as
some firms that used to declare intra-EU imports under the low declaration threshold stop declaring these
flows after 2011. Because the selection effect is concentrated on relatively small import flows, this also shifts
relative import shares up.

26In practice, the break in the data only covers imports from EU member states, which is a slightly
narrower country set than the ETS sample. However, since the vast majority of ETS imports is sourced
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identification strategy being completely different. Both the import share and the import

probabilities start increasing during the first phase of ETS, thus suggesting a form of leakage

away from ETS countries. Carbon leakage accelerates during the third phase of ETS when

the price of carbon permits starts increasing.

Given these motivating empirical facts, we next provide a model of firms’ sourcing deci-

sions meant to explain the salient leakage that we observed in the data and which we can

use to examine the impact of environmental taxes on both firm-level sourcing decisions and

aggregate outcomes.

4 Model

This section sketches out a quantitative multi-country sourcing model that provides a method-

ology to solve firm’s problem with interdependencies following the approach of Antràs et al.

(2017), referred to as AFT henceforth.27 We include the following additional ingredients

to the baseline model to capture heterogeneous environmental taxes and their impact: (i)

clean and dirty inputs, (ii) country- and input-specific carbon taxes, and (iii) carbon dam-

ages to households’ utility. This framework allows us to think about the trade and welfare

consequences of environmental policies and captures their impact both at the intensive and

extensive margins of adjustments by firms in their sourcing decisions.

While the model is rich in terms of a firm’s sourcing problem, we abstract from other

production details to focus on matching the empirical facts we have documented. First,

we do not include energy as a direct factor in either input or final goods production, as

energy is not a tradable input from a firm’s point of view. Instead, we capture how a firm

may adapt via its use of both clean and dirty tradable inputs, which in turn will capture

emissions that are generated via energy usage. Moreover, the use of input-output data to

construct the tax rates we apply in our quantitative exercises captures the potential impact

on a firm’s energy usage, as the data include energy producing sectors. Second, we treat a

firm’s productivity level as given and thus do not allow for the possibility of an innovation

channel, unlike Colmer et al. (2024) who focus on innovation responses to carbon policies.

4.1 Households

A representative household in country i values the consumption of a CES aggregate of

differentiated manufacturing varieties purchased from domestic final good producers, along

from EU countries, exploiting this discrepancy is not possible. In Figure 3, we thus control for a break
affecting all ETS countries from 2011 on, and estimate the treatment effects after 2011, in relative terms
with respect to 2011.

27Appendix B provides details and proofs.
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with a homogeneous good that is included to pin down the equilibrium wage. The CES

manufacturing aggregator and the homogeneous good are combined in a Cobb-Douglas,

with weight α on the manufacturing component. The CES aggregator is written as:

Ci =

[∫
ω∈Ωi

qi(ω)
σ−1
σ dω

] σ
σ−1

, σ > 1, (2)

where Ωi denotes the set of manufacturing varieties available to a household and σ measures

the elasticity of substitution between varieties ω.

It will be useful to summarize the demand side of the model later by a demand term Bi

defined as:

Bi =
1

σ

(
σ

σ − 1

)1−σ

EiP
σ−1
i , (3)

where Ei is (exogenous) nominal expenditures on manufacturing goods and the ideal price

index is defined as Pi ≡
[∫

ω∈Ωi
p(ω)1−σ dω

] 1
1−σ

.

4.2 Production

Final goods. There is monopolistic competition in the final goods’ market, where each

firm produces a single differentiated variety and sells it to domestic households at a price

that is a constant markup, σ
σ−1

, over marginal costs. Free entry ensures that there are no

residual profits to be distributed to households.

Final goods production, yi, is a combination of the firm’s technology (φ), and a bundle

of intermediate goods, which are sourced from around the world to minimize costs. We

depart from AFT and modify the supply-side of the model by introducing two categories of

inputs, clean and dirty inputs. To this end, we introduce a nested-CES structure involving

a firm-specific bundle of clean inputs yC(φ) and a bundle of dirty inputs yD(φ), which can

be sourced domestically or imported:

yi(φ) = φ

[
yCi (φ)

η−1
η + yDi (φ)

η−1
η

] η
η−1

,

with

yCi (φ) =

[∫
ν∈AC

yCi (φ, ν)
ρ−1
ρ dν

] ρ
ρ−1

, yDi (φ) =

[∫
ν∈AD

yDi (φ, ν)
ρ−1
ρ dν

] ρ
ρ−1

,

where η is the elasticity of substitution between clean and dirty input bundles, and each

bundle is itself a CES aggregate of a mass of differentiated varieties, which are substituted

at rate ρ > 1, assumed to be the same across clean and dirty inputs. We index each variety of

input, yti(φ, ν), t = C,D, by the final good firm’s productivity parameter, φ, and the variety
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of the intermediate good, ν. Each firm treats the mass of clean and dirty varieties, AC and

AD, as exogenous parameters. We calibrate these using data on the relative contribution of

clean and dirty inputs to intermediate consumption, and normalize AC so that AC+AD = 1.

All else equal, an increase in AD puts more weight in firms’ cost on dirty inputs, which makes

firms more sensitive to the taxation of these inputs.

Firms discover their productivity, φ, after incurring an entry cost fe. Productivity is

drawn from a country-specific distribution g(φ) with support [φ,∞) and with an associated

continuous cumulative distribution G(φ). For estimation purposes, we assume that G(φ) is

Pareto with shape parameter κ.

Cost minimization implies the following demand for input bundles of type t = C,D:

ct(φ)yt(φ) =

(
ct(φ)

c(φ)

)1−η

c(φ)y(φ),

with

c(φ) =
[
cD(φ)

1−η
+ cC(φ)

1−η
] 1

1−η
,

ct(φ) =

[∫
ν∈At

ct(φ, ν)
1−ρ

dν

] 1
1−ρ

,

where c(φ) is the unit cost of the firm’s input bundle given the vectors of unit costs for

individual clean and dirty inputs, ct(φ), which are in turn a function of each variety’s unit

cost, ct(φ, ν).

Intermediate goods. Intermediates can be sourced from any country j ∈ I t and we

denote atj(ν) the (constant) unit labor requirement of variety ν of input t produced in country

j. As is standard in the literature, we assume that there is some bilateral iceberg trade cost

that must be paid to import a good, and which is normalized to one for goods sourced

domestically. We further augment these trade costs with taxes that capture environmental

policy. Specifically, we model bilateral trade costs between country i and country j, denoted

by {i, j} for good type-t as

τ tij = τ̃ tij︸︷︷︸
Iceberg trade cost

× taxt
ij︸︷︷︸

Bilateral carbon tax

,

with taxt
ij varying depending on the input type, the zone to which i and j belong, and the

policy put into place. Note that taxt
ij = 1 implies no carbon tax.

Following Eaton and Kortum (2002), we assume that intermediate input efficiency, 1/atj(ν),

is the realization of draws from a Fréchet distribution:

Pr
(
atj(ν) ≤ a

)
= exp

(
−T t

ja
θt
)
, with T t

j > 0,
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where these draws are assumed to be independent across locations and inputs. T t
j governs

the state of technology in country j for type t input while θt determines the variability of

productivity draws across inputs of type t. Firms in country i must pay fixed cost f t
ij to

source a type-t intermediate good from country j. We can then define It(φ) ⊂ I t as the

set of countries from which a firm can source t-type inputs (has paid fixed cost f t
ij), which

following AFT is called the Global Sourcing Strategy (GSS).

Sourcing problem. The cost of a French firm sourcing from country j is a function of

trade costs and Ricardian comparative advantage:

ct
(
φ, ν; It(φ)

)
= min

j∈It(φ)

{
τ tija

t
j(ν)wj

}
.

The firm’s sourcing problem is solved in two stages. First, conditional on sourcing, the

share of type-t inputs sourced from country j, χt
ij, is

χt
ij(φ; It(φ)) =

 T t
j (τ tijwj)

−θt

Θt
i(φ;It(φ))

if j ∈ It(φ),

0 if j /∈ It(φ),
(4)

with

Θt
i(φ; It(φ)) ≡

∑
k∈It(φ)

T t
k

(
τ tikwk

)−θt
. (5)

Therefore, more stringent and/or asymmetric carbon taxes increase bilateral trade costs,

thus reducing the share of inputs from the regulating country in any firm’s input bundle –

this captures the intensive margin impact of climate policy in our model.

The firm’s decision to source is solved to maximize profits, whereby the firm must decide

whether or not to pay the fixed costs to source from a given country. Profits for a firm in

country i can then be written as a function of cost, market demand Bi, the wage wi, and

the fixed costs of importing both clean and dirty goods from potential source countries:

πi(φ; ID(φ), IC(φ)) =

(
c(φ; ID(φ), IC(φ))

φ

)1−σ

Bi − wi

∑
j∈ID(φ)

fD
ij (φ)− wi

∑
j∈IC(φ)

fC
ij (φ),

(6)

with

c(φ; ID(φ), IC(φ)) =
[(
cD(φ; ID(φ))

)1−η
+
(
cC(φ; IC(φ))

)1−η
] 1

1−η
,

ct(φ; It(φ)) =
(
At

) 1
1−ρ

(
γtΘt(φ; It(φ))

)−1/θt
,

γt ≡
[
Γ

(
θt + 1− ρ

θt

)]θt/(1−ρ)

, Γ the gamma function, ρ < 1 + θt.
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Firms trade-off the reduction in costs associated with a large GSS and the payment

of additional fixed costs given demand (Bi) and productivity (φ). The solution to this

problem is complex given the convexity of the cost function and therefore involves solving

a large combinatorial optimization problem. Following AFT, the model can be solved using

an algorithm from Jia (2008), extended by Arkolakis, Eckert and Shi (2023). While our

approach follows the previous literature, it is worthwhile noting that applying this approach

is further complicated given that firms are now sourcing two types of goods, clean and dirty,

and these decisions are interdependent. We show in Appendix B what bounds must be

placed on parameter values in order to make the solution method tractable.

5 Model Estimation

We need to estimate parameter values to conduct a quantitative analysis of the impact of

environmental policies on firms’ sourcing decisions. Our estimation approach is the following.

First, we use French import data to estimate a supplier country’s sourcing potential by

goods type, i.e., T t
j

(
τ tijwj

)−θt
. Second, we borrow estimates of elasticities and productivity

parameters from the literature. Third, given the model structure, we apply simulated method

of moments (SMM) to firm-level data to estimate the vector of average fixed costs and their

variance across firms, the mass of varieties for intermediate goods, and market demand.

Crucially, we estimate the model using pre-ETS data in order to avoid capturing the impact

of policy. Further, evidence in Section 3.2 confirms that there are no pre-trends in import

sourcing variables.

5.1 Estimation of sourcing potential

Given the model structure, we can use equations (4) and (5) to motivate the following fixed

effect regression to back out each country’s sourcing potential for each type of good:

logχt
fi,j − logχt

fi,i = αt
ij + εtfi,j, (7)

where χt
fi,j is firm f in country i’s import share of type-t from country j, where i refers to

home market (France). αt
ij are source-country-type fixed effects, which in the model relate

to the country’s sourcing potential to country i’s: αt
ij = log T t

j

(
τ̃ tijwj

)−θt − log T t
i (τ̃

t
iiwi)

−θt
.

We estimate (7) once for dirty inputs and once for clean ones. Note that since equation

(7) is in logs, the procedure relies on the subset of firms that source some of their inputs

domestically and from abroad. We end up with 30,225 observations for clean inputs and

11,448 observations for dirty inputs. With our α̂t
ij estimates at hand for each input type,

we then link dirty and clean sourcing potentials by writing i’s dirty sourcing potential as
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Figure 4. Estimated sourcing potential for Clean and Dirty inputs
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Notes: This figure plots the log T t
j

(
τ̃ tijwj

)−θt

for t = C,D, where log TC
i (τ̃ tiiwi)

−θC

is normalized to 0. The
size of the bubbles is proportional to the value of overall imports. The blue line is the ratio of France’s clean
to dirty sourcing potential. Countries below the line are relatively more valuable for dirty inputs than for
clean ones, compared to France.

a function of the clean one, TD
i

(
τ̃Dii wi

)−θD
= λTC

i

(
τ̃Cii wi

)−θC
, and estimate the following

equation with OLS:

α̂D
ij − α̂C

ij = − log λ+
[
log TD

j (τ̃Dij wj)
−θD − log TC

j (τ̃Cijwj)
−θC

]
= µ+ εij

(8)

We get λ = 0.54, meaning that the dirty sourcing potential of France is about half of the

clean one. Normalizing France’s clean sourcing potential to 1, we then have a value for each

country and input type.

Figure 4 plots the log of the estimated sourcing potential for clean inputs on the y-axis

vs. dirty inputs on the x-axis in log-log scale. We also include a line which is the ratio

of France’s clean to dirty sourcing potential. Countries below the line are relatively more

valuable for dirty inputs than for clean ones, compared to France. We represent origin

countries with bubbles whose size reflect the importance of a source country in aggregate

imports. Zooming in on the figure, we see that the majority of source countries are below

the line, indicating that they have a comparative advantage over France on dirty inputs

relative to clean inputs. These include non-ETS countries such as Russia (RU) and Australia

(AU), and the ETS member Norway (NO), which are major exporters of petroleum products
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and dirty raw materials. Interestingly, both China (CN) and India (IN) have slightly larger

cleaning sourcing potential than dirty ones compared to France. With the estimated sourcing

potentials in hand, we can now proceed to back-out other necessary structural parameters.

5.2 Elasticities and productivity parameters

To proceed in the estimation of the model’s other key variables, such as the fixed cost of

accessing a supplier market, we need to take a stand on the distribution of domestic firms’

productivity, the distribution of intermediate inputs efficiency, the elasticity of substitution

between clean and dirty input aggregates, as well as the household’s elasticity of substitution

across varieties of goods.

We borrow the Pareto shape parameter of firms productivity, κ = 4.25, from Melitz and

Redding (2015). We set the value of the shape parameter of input efficiency, θ = 1.789, to be

the same for both t = C,D and equal to the value estimated in AFT. We use the elasticity

of substitution between clean and dirty energy, estimated using international input-output

tables from Papageorgiou, Saam and Schulte (2017), as the value of the parameter η = 3,

which governs the substitution between clean and dirty inputs. The elasticity of substitution

in consumption σ is estimated by taking advantage of the CES form, which yields that

firms’ markups take the form σ
σ−1

. We use our firm-level data to compute the markup as

the ratio of sales to total input purchases and taking the mean across firms and arrive at a

σ = 6.9. Finally, we use World Bank data to set α, the Cobb-Douglas exponent on the CES

manufacturing aggregator, at α = 0.1.

5.3 Simulated method of moments

The rest of the model’s parameters, namely fixed costs of sourcing, the mass of dirty inputs

sourced by French firms, and market demand are estimated using SMM.

The first set of parameters that we must estimate relate to the fixed costs firms face in

sourcing a type-t good from a new country, f t
ij. We follow AFT by assuming that these

fixed costs can be modeled parametrically using a gravity-style equation, and impose the

following log-linear form on average bilateral fixed costs:

log f̄ t
ij = log βt

0 + βt
shortDij log distij + βt

long(1−Dij) log distij + contigij log β
t
cont

− βt
corrcorrj + EUij log β

t
EU − βt

TABTABj

[
+βt

ClimateClimatej if t = D
]
,

(9)

where distij is country j’s distance from country i and Dij ≡ 1[distij < 5, 000km]. contigij

identifies neighboring countries and EUij ≡ 1[(i, j) ∈ EU] EU member states. corrj
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is j’s control of corruption.28 TABj is j’s trading across borders score from the World

Bank’s Doing Business Index, a continuous variable ∈ [0; 100] which is increasing in easiness

to trade. Finally, Climatej is j’s score in Yale’s Environmental Protection sub-index on

climate mitigation policy (continuous ∈ [0; 100], higher is better). Further, following the

methodology in AFT we also add some idiosyncratic randomness in fixed costs faced by

firms in sourcing a given variety, where δt is an additional parameter to be estimated:

f t
ij(φ) = f̄ t

ij × exp
(
xt
)
, xt ∼ N (0,

√
δt). (10)

The set of variables used to estimate (9) differ from AFT given that we are examining

French firms rather than US ones. Specifically, given the geographical closeness of Europe

and high volume of intra-European trade, we include a dummy variable to capture the non-

linear fit of the distance variable for trade with other countries (Dij = 1 if i and j are less

than 5,000 kilometers apart). We also exploit two institutional variables that better help

us match the data. First, the TABj variable helps to capture the fixed cost of overcoming

barriers to entry in international trade for different countries. Second, given that we are also

interested in differing sourcing behavior for clean and dirty products, we include a measure

of source countries’ climate mitigation policy (Climatej), which may make it more costly to

trade in some types of goods vs. others.

Table 2 presents the calibrated moments that we target to estimate the OLS coefficients

of gravity equation (9) and the δt parameters for equation (10). The first set of moments

are used to estimate the vector of β coefficients estimated in the gravity equation. Specifi-

cally, we exploit information on the share of importers along several dimensions to identify

the different coefficients. First, the share of importers of t goods as a fraction of all firms

allows us to identify the average level of fixed costs βt
0. Second, the share of importers of

t goods from each country allows us to identify parameters on country-specific variables,{
βt
short, β

t
long, β

t
cont, β

t
corr, β

t
EU , β

t
TAB, β

t
Climate

}
. Turning to the estimation of the variance pa-

rameters, δt, we target (i) the number of firms importing t goods from the most popular

country over the number of firms that import t goods, and (ii) the share of importers of t

goods with sales below median. The intuition for using (i) is that, as shown in proposition

1 in AFT, in the case of identical fixed costs across firms (δt = 0), if a country is part of

a firm’s GSS, it is also necessarily part of the GSS of firms with higher productivity levels.

With this in mind, in a world with δt = 0, we would have that the number of firms import-

ing t goods from the most popular country is the same as the number of firms importing t

goods, yielding the ratio in (i) to equate 1. Any deviation from 1 is indicative of the value

28Source: World Development Indicators, World Bank. The indicator is a continuous variable ∈ [−2.5; 2, 5],
with higher values indicating better control of corruption.
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Table 2. Targeted moments in the data for SMM estimation

Parameter Moments matched

Fixed cost of sourcing each type-t: f t
ij

βt Share of importers of t goods as a fraction of all firms
Share of importers of t goods from each country

δt
# firms importing t goods from most popular country
over # of firms that import t goods

Share of importers of t goods among firms below the sales median

AD Share of dirty inputs aggregated across firms

Bi Share of firms with sales below data median value

Notes: βt explain avg. source-country fixed costs; δt generates randomness in fixed costs across firms; AD

is the mass of dirty goods sourced; Bi is market demand.

of δt.29 The intuition behind using moment (ii), the share of importers of t goods among

firms below the sales median, is the following. With δt = 0, the fixed costs would simply

rely on country-specific data, and we would obtain a particular share of importers with sales

below the median, not necessarily matching the data. Given the way random shocks and

productivities are drawn, as explained in Appendix B.3, adjusting δt will allow us to match

data moment (ii).30

The final two parameters that we estimate are AD, the mass of dirty goods in produc-

tion, and market demand, Bi. We target the share of dirty inputs aggregated across firms

to estimate AD, and the share of firms with sales below the median data value to target

Bi. Note that our strategy to estimate Bi differs slightly from AFT who target costs di-

rectly. We target total sales given the two-input type setup we are using as we treat costs

heterogeneously for clean and dirty inputs.

29Importantly, this moment is perfectly correlated with the value for the most popular country in the
second moment used to estimate β, i.e., the the share of importers of t goods from each country. Hence, we
do not need to add moment (i) in the estimation per se, as it is already captured in this other moment.

30As explained, in Appendix B.3, each productivity level φ is duplicated 100 times, such that each entry of
this productivity level has a unique vector of fixed costs shocks. Also, each entry of each productivity level
is applied to the same level of fixed costs shocks. This means that the first firm with productivity level φL

has the same vector of shocks as the first firm with productivity level φH > φL. However, since in the model
φH will be less sensitive to fixed costs changes, increasing or decreasing δt will change lower productivity
firms’ import strategies relatively more than higher productivity firms, helping us match moment (ii).
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Figure 5. Model estimation and fit for France’s manufacturing sector

Panel I. Share of importers by source country

(a) Clean (b) Dirty

Panel II. Share of imports by source country

(c) Clean (d) Dirty

Notes: This figure plots model-based trade statistics and their data counterparts. Panel I plots the share
of manufacturing sector importers by source country for clean products in (a) and dirty products in (b).
Panel II plots the share of manufacturing sector imports by source country for clean products in (c) and
dirty products in (d). All data used in the model and for actual moments in the data are sourced for 2004.

Figure 5 presents scatter plots to gauge the model fit of the SMM estimation, with the

data on the y-axis and the model predictions on the x-axis. Panel I presents results for

the extensive margin of imports. We plot the share of importers by country for clean and

dirty inputs in sub-figures (a) and (b), respectively. The overall fit of the model is good

for both sectors, as many of the observation points fall close to the forty-five degrees line,

the fit of clean inputs exhibiting somewhat less variance than dirty inputs. Panel II next

presents results for import shares, with clean in sub-figure (c) and dirty in sub-figure (d).
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Similarly to the extensive margin fit, we see that the model and data points falling around

the forty-five degrees line, though the fit exhibits more variation for both clean and dirty

importer sources. We further report the estimated parameters in Table C.7, the data and

model moments in Table C.8, and the estimated fixed costs and sourcing potential for clean

and dirty source countries in Figure D.6.

6 Quantitative Impact of Carbon Taxes

This section analyzes the impact of introducing a carbon tax, which is meant to mimic the

ETS, followed by a carbon border tax to evaluate the potential impact of the CBAM. The

model allows us to quantify how firms’ sourcing choices are impacted by the taxes at different

levels of granularity, as well as providing the welfare implications of the policies.

To quantify the welfare impact of the tax policies, we introduce a carbon damage func-

tion into the household’s utility function, so that it faces a trade-off between aggregate con-

sumption and the environmental damages that come from more production/consumption.

Specifically, we define utility of the representative household in country i as:

Ui = H1−α
i Cα

i [1 + µi (CO2 − CO2,baseline)]
−1 ,

where Hi is the homogeneous good and Ci is the CES manufacturing aggregator. CO2 is the

amount of CO2 emissions (in tons) associated with producing the inputs for the household’s

consumption goods, and µi is a term to be calibrated. The household’s indirect utility, which

we will use later, takes the following form:

Vi =
Ii

N1−α
i Pα

i

[1 + µi (CO2 − CO2,baseline)]
−1 ,

where Ii is total nominal spending, Ni denotes the price of the homogeneous good, and

Pi represents the CES price index of the manufactured final goods. The carbon damage

function takes the same form as in Shapiro (2021) and has several useful properties. First,

including it as multiplicative of aggregate consumption in utility facilitates counterfactual

analysis using ratios. Second, normalizing by the CO2,baseline term allows us to abstract from

baseline emissions damages, and simply study counterfactual damages. Third, the indirect

utility form implies that damages are proportional to real income, allowing the calibration

of µi to match a specific cost of carbon in real euro terms.31 CO2 emissions include all

31The latest “Technical Support Document on Social Cost of Carbon, Methane, and Nitrous Oxide” of
the US government’s Interagency Working Group on Social Cost of Greenhouse Gases indicates that under
a discount factor slightly above 3%, the social cost of a ton of carbon is around e200 in 2020. Following
Nordhaus and Boyer (2000), we further assume that France only bears part of this global cost. Overall, we
end up with the calibration of µi such that one extra ton of CO2 reduces French real income by e10.58.
More details on the calibration of µi are available in Appendix B.4.
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emissions from the production of inputs used by French firms, both domestically and abroad.

This applies to both the baseline scenario and the counterfactual scenario. These emissions

are calculated using the emissions intensity data from the World Input-Output Database

environmental accounts (Corsatea et al., 2019).

6.1 Carbon taxes and tariffs

To quantify the impacts of implementing a carbon tax and a carbon tariff, we run two policy

experiments using the model, which follow current policies as closely as possible. In the first

scenario, we apply a carbon tax of e100 per ton to all ETS sectors within ETS countries

(as detailed in columns (1) and (4) of Table C.4). In a second scenario, we complement the

first tax with a carbon tariff of e100 per ton to all imports in CBAM sectors from non-ETS

countries (as detailed in columns (3) and (6) of Table C.4).

The first scenario is meant to capture the incidence of ETS regulations on production

costs for dirty-intensive manufacturing sectors while the second scenario complements the

unilateral carbon policy with a carbon border adjustment mechanism. In both cases, the

product scope of the policy reproduces the actual coverage of the corresponding European

scheme.32 Likewise, the geographical scope uses the actual borders of the ETS system while

the ETS+CBAM scenario applies the tax to all products imported from outside of the ETS.33

We calibrate the nominal tax rates using information on sectoral emissions intensities from

WIOD for each country in our sample.34 This amounts to computing the embodied carbon

emissions using a sector-based approach in which all producers within a sector are taxed at

the average emissions intensity. Furthermore, we use global sectoral input-output linkages

to compute the overall incidence of these taxes on manufacturing sectors’ intermediate con-

sumption. Doing so captures the pass-through of costs via roundabout production taking

into account both domestic and foreign linkages. While this analysis is not fully general

equilibrium as we do not capture changes in trade and production abroad, the inclusion of

IO linkages in calculating the incidence of taxation maps into the actual impact of the tax on

32In Figure D.9, we compare these scenarios with a counterfactual policy that would cover all sectors in
the economy. As European policies target the most emissions-intensive sectors, the difference is not huge for
most countries. For some non-ETS countries like China or Russia, broadening the carbon border tax to all
sectors would almost double the average tax level though.

33As discussed in OECD (2020), the European Union should introduce exemptions for products that have
already been taxed under national carbon policies. Moreover, it has been argued that exemptions for least-
developed countries could be justified. In our stylized setting, we abstract from political economy concerns
and apply the tax broadly. Whether the products are taxed under CBAM or under national carbon policies
does not make a difference in our context as long as the level of the tax and the calculation of embodied
carbon emissions is the same.

34The WIOD sectoral classification follows ISIC rev. 4. In Table C.5, similar to Table C.4 for NAF sectors,
we present the classification of ETS and CBAM sectors according to ISIC rev. 4. Figure D.1 reproduces a
heat graph of country-sector emissions.
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Figure 6. Tax rates for dirty and clean inputs by country zone and policy scenario

Notes: This figure presents tax rates for each input type for ETS and non-ETS countries. Based on authors’
calculations using data from WIOD’s sector-level emissions + WIOD IO tables. Each bar is calculated as
the average across the countries within that category. The model uses country×input level taxes depicted
in Figure D.7.

French firms.35 Finally, our baseline calculations assume that tax revenues are not rebated

to households and thus are a pure deadweight loss. For comparison, we further calculate

aggregate welfare assuming that tax revenues are rebated to households.

Figure 6 presents the tax rates that we use for our quantification exercises, where we have

aggregated up across countries that trade with France – see Figure D.7 for the underlying

country-level tax rates. We present taxes for clean (green bars) and dirty (brown bars) in-

dustries for the counterfactual mimicking the ETS regime (‘ETS tax’) and the counterfactual

mimicking the ETS + CBAM regime (‘ETS tax + CBAM tariff’). Unsurprisingly, the tax

incidence is much larger for the dirty sectors, but taxes are not zero for clean sectors given

the existence of roundabout production, which is captured by incorporating the IO linkages

when calculating indirect taxes for each French sector. In addition, although non-ETS coun-

tries display higher pollution intensities on average, the average tariff rate is lower than the

tax rate for ETS countries since tariffs cover less products than the ETS tax.36

With these tax rates in hand, we multiply the previously calculated sourcing potentials

T t
j

(
τ̃ tijwj

)−θt
by the tax multiplier

(
taxt

ij

)−θt
, with taxt

ij > 1. Note that since the sourc-

ing potentials estimated in Section 5.1 are normalized by France’s, we need to adjust each

35See Appendix A.5 for details.
36When taxing all dirty inputs with the same ETS coverage, tax rates are much higher for non-ETS

countries, as seen in Figure D.8. In addition, when taxing all sectors, and not only the ETS sectors, this
difference between ETS countries and non-ETS ones grows even larger, as seen in Figure D.9.
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post-tax sourcing potential by French sectors’ exposure to the carbon tax. Last, any counter-

factual requires the re-estimation of market demand Bi in equation (3), from which we solve

for the new mass of firms captured by Ωi.
37 It is important to note that nominal expendi-

tures on manufacturing goods (Ei in equation (3)) are held constant across simulations. As

a result, aggregate input purchases also remain the same, implying that any geographical or

input-type shift in imports reflects a change in the share of imports from specific countries or

types of inputs. Similarly, any variation in aggregate emissions results from firms adjusting

their input purchases toward cleaner inputs or countries while holding overall expenditures

constant.

6.2 Policy experiments

6.2.1 Model-based carbon leakage under the ETS tax and CBAM tariff

We begin by analyzing the extent of carbon leakage generated by our model in the context of

the ETS tax policy experiment, using a tax rate of e100 per ton of CO2. We first calculate

how firms adjust their import shares and extensive margin decisions when moving from the

no-tax baseline scenario to the ETS tax counterfactual, and compare these results to our

empirical estimates in Table 1. We then run a second experiment that adds the CBAM tariff

to the ETS tax, which allows us to gauge the potential future impact of the EU’s carbon

tariff on French firms’ carbon leakage.

ETS tax scenario. We use the model-generated firm-level data to run regressions similar

to equation (1),38 again using a control group composed of clean inputs sourced from ETS

countries. Table 3 presents the regression estimates. Column (1) reproduces our most

conservative estimates from the data, while column (2) presents estimates based on the

model-generated ETS scenario with a e100 per ton tax. Results in panel (a), where the

regressand is a firm’s import share, show that the model generates an estimated coefficient

comparable to that from the data regressions – the model reproduces 80% of the leakage

estimated in the data. Turning to the extensive margin adjustment in panel (b), we find that

the model’s generated data only reproduce one fifth of the estimated leakage in comparison

to the estimate based on the data regressions.

The model thus underestimates adjustments at the extensive margin when applying a

37See details in Appendix B.2.
38Specifically, we simulate 36,000 firms across 50 countries with two types of inputs, so that for each simu..
lation we generate a matrix of import values with dimensions 36, 000× 100. Since the model includes only

two types of inputs, compared to the much larger number of products in the dataset, the simulated data
have a lower level of granularity. Nonetheless, we are able to run regressions with fixed effects that resemble
those in the reduced-form analysis.

30



e100 tax. One possible explanation for this result is that the model is static, thus neglecting

the potential forward-looking dimension of import sourcing decisions that is captured in the

empirical estimation. If firms anticipate that carbon policies will become more binding in

the future, they may react more at the extensive margin, including in periods when ETS

policies are not especially binding. Instead, import shares will remain relatively balanced

between ETS and non-ETS countries, since they react more to the current level of the tax.

Another possible explanation is that the carbon tax may affect both the fixed and the variable

cost components of sourcing decisions in reality (e.g., by increasing paperwork), while our

model assumes that the fixed cost of importing from non-ETS countries (compared to ETS

countries) is left unaffected. Increasing the relative fixed cost of sourcing from ETS countries

would indeed induce larger adjustments at the extensive margin in the simulated data.

ETS tax + CBAM tariff scenario. Having shown that our model accurately predicts

carbon leakage under the ETS tax, at least qualitatively, we next study the potential im-

pact of a carbon tariff in this environment. Column (3) in Table 3 replicates the firm-level

regressions in the ETS+CBAM scenario. Compared to the ETS-only scenario, leakage is

more than reversed, meaning that French firms increase their sourcing of dirty inputs from

ETS countries compared to clean inputs. This happens despite the CBAM scheme having a

lower sectoral coverage than ETS. The reason is that non-ETS countries display relatively

high pollution intensities compared to ETS countries. Once their production is taxed un-

der the same carbon price as ETS production, French firms reallocate their intermediate

consumption towards low emitting countries in the EU.

6.2.2 Aggregate and welfare results

We next consider the two policy experiments’ quantitative implications for aggregate emis-

sions and imports in Table 4, as well as for welfare in Table 5. The first set of results

presented in panel (a) of Table 4 show the change in millions of tons of emissions embedded

in inputs sourced globally by French firms. These values can be compared to the impact of

a policy on the flow of input purchases, which are shown in panel (b) of the Table 4. Panel

(a) of Table 5 presents the change in the ideal price index along with the welfare changes,

which are computed by taking the ratio of indirect utilities. Since Ii and Ni—total nominal

spending and the homogeneous good price index, respectively—are not explicitly modeled

and hence for not vary, we compute:

∆Vi =

(
Pi

P ′
i

)α

[1 + µi (CO′
2 − CO2,baseline)]

−1
, (11)
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Table 3. Carbon leakage regressions: Data and model-based policy experiments

Data ETS ETS + CBAM
(1) (2) (3)

Panel (a) Import Share
Dirty product × Non-ETS
× 1 (tax = e100 or Post) 0.129∗∗∗ 0.106∗∗∗ -0.046∗∗∗

(0.019) (0.002) (0.002)
Pseudo R2 0.162 0.118 0.119
Observations 7,560,435 402,579 398,892

Panel (b) Import Probability
Dirty product × Non-ETS
× 1 (tax = e100 or Post) 0.126∗∗∗ 0.025∗∗∗ -0.016∗∗∗

(0.010) (0.001) (0.001)
Pseudo R2 0.044 0.002 0.000
Observations 7,560,435 402,579 398,892

# (Simulated) Firms 27,240 36,000
Control group Non-ETS Clean products
Fixed effects pc,t pc,t

Notes: This table presents the estimated β from regression (1) using both the reduced form dataset and two
model-generated datasets (ETS and ETS+CBAM). In the data, we estimate a version of (1) that constrains
all coefficients posterior to 2004 to equality. The model-based regressions compare the new equilibrium under
ETS or ETS+CBAM to the baseline scenario without taxes. In the table, f , p, c, and t represent: a firm, the
imported product (2 types in the model regressions, all products in the reduced form), the source country,
and either the tax level (0 or 100) in the model regression, or time in the reduced form. (*, **, ***) denote
significance levels at 10%, 5%, and 1%, respectively.

where the primed variables represent counterfactual values. We compute these changes

for the baseline where taxes are treated as a deadweight loss as well as when they are rebated

to households.39

We consider two scenarios for the cost of carbon, one set at €200 and the other at €1500,

aligning with recent literature (Bilal and Känzig, 2024; Rennert et al., 2022; Moore et al.,

2024). Last, we calculate welfare changes for two cases: one assuming the representative

household is French, and the other assuming it is European. Since the policy operates at

the European level, welfare effects from changes in the price level and pollution reductions

39In that case, ∆Vi is computed as ∆Vi =
(

Pi

P ′
i

)α
Ii+Ti

Ii
[1 + µi (CO′

2 − CO2,baseline)]
−1

, where Ii is total

GDP.
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Table 4. Quantitative results: change from baseline

Variable ETS ETS + CBAM

Panel (a) ∆ Million tons emissions embedded in inputs

Total -1.84 -6.94
... from clean inputs only 0.02 -0.39
... from dirty inputs only -2.13 -6.55
... from FR inputs only 0.06 0.89
... from ETS (ex. FR) inputs only -5.65 -3.45
... from non-ETS inputs only 3.48 -4.39

Panel (b) ∆ Million EUR in inputs purchases

Total 0 0
... from clean inputs only 189.14 1845.37
... from dirty inputs only -189.14 -1845.37
... from FR inputs only 211.41 3160.36
... from ETS (ex. FR) inputs only -1575.62 -1338.99
... from non-ETS inputs only 1364.21 -1821.37

Notes: ∆ denotes changes. All simulations apply a carbon tax of e100 per ton of CO2. Total nominal
input purchases are unchanged across simulations in the model, as Ei is fixed. The baseline level of emissions
embedded in input purchases is equal to 168.5M tons of CO2. The ETS policy (resp. ETS+CBAM policy)
thus reduces emissions by −1.09% (resp. −4.12%).

impact all European households.40

ETS tax scenario. Implementing the ETS scenario in column (1) results in a 1.84 million

tons reduction in emissions, driven by a fall in the use of dirty inputs (−2.13M tons). Mean-

while, firms substitute towards using clean inputs, which are not emission-free given supply

chain linkages, so emissions embedded in the use of intermediate goods rises slightly (0.02M

tons). The following three rows illustrate how firms’ new sourcing decisions contribute to

carbon leakage to non-ETS countries. Specifically, the reduction in sourcing from ETS coun-

tries results in a 5.65 million tons decrease in emissions embedded in these countries’ inputs,

while emissions embedded in inputs from non-ETS countries rise by 3.48 million tons. In-

terestingly, the third row indicates a 0.06 million tons increase in emissions embedded in

inputs from France. This increase is largely similar for both inputs types – not depicted in

40In this case, we assume the manufacturing price index Pi for the European household is the same than
that of the French household both at baseline and in the counterfactual, and only changes in emissions for
French firms are considered. These four scenarios affect the calibration of µi, as detailed in Section B.4.
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Table 5. Welfare results: change from baseline

Variable ETS ETS + CBAM

Panel (a) ∆ Welfare

% ∆Pi 0.051 0.542

French representative household

Social Cost of Carbon: e200
% ∆Vi without tax rebate -0.0047 -0.0501
% ∆Vi with tax rebate +0.3103 +0.4931

Social Cost of Carbon: e1500
% ∆Vi without tax rebate -0.0022 -0.0246
% ∆Vi with tax rebate +0.3128 +0.5187

European representative household

Social Cost of Carbon: e200
% ∆Vi without tax rebate -0.0047 -0.0502
% ∆Vi with tax rebate +0.0497 +0.0841

Social Cost of Carbon: e1500
% ∆Vi without tax rebate -0.0022 -0.0252
% ∆Vi with tax rebate +0.0522 +0.1092

Notes: ∆ denotes changes. All simulations apply a carbon tax of e100 per ton of CO2. Through µi, the
indirect utility (last panel) assumes a marginal cost of carbon of e200 or e1500 per ton, depending on
version. ∆Vi is computed as in equation (11). The last panel also depicts the change in welfare under the
assumption that total tax revenues Ti are rebated lump-sum to households, and considers a version in which
the representative household is European. ∆Pi is not adjusted by α, the share of manufacturing expenditures
in France (∼ 10%), but it is when computing changes in utility, in order to calculate welfare changes for the
whole economy.

table. This rise in emissions is due to an increase in sourcing from France, which the model

delivers because the tax applied to France is on average smaller than the one applied to other

countries with high sourcing potentials. Overall, the net effect of increased emissions from

sourcing clean inputs and from leakage to non-ETS inputs is outweighed by the reduction

in emissions from decreased sourcing of dirty inputs within the ETS zone, leading to the

overall decrease in emissions. This happens despite our model assumption that total input

purchases are constant, through Ei. Hence, this emissions decrease is simply the result of a

reshuffling of firms’ input purchases, as illustrated in the second panel of Table 4.

Table 5 summarizes the welfare impact of the carbon tax. The carbon tax increases the

price index of manufacturing goods, thus reducing real consumption. In the ETS scenario,
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the price impact is moderate, at 0.05%. This holds true despite tax rates reaching more than

20% for dirty inputs sourced from ETS countries (Figure 6). The reason for the low incidence

is that firms adapt by substituting across supplier countries and input types. Still, the price

increase is sufficiently high to generate a small fall in welfare, at −0.005%. This holds true

even when we consider a social cost of carbon of e1500, and if we model the representative

household as European.41 The benefit of a fall in emissions does not compensate the real

consumption loss. This finding lines up with much of the quantitative literature, which shows

that consumption losses tend to dominate the impact of changes in emissions in terms of

aggregate welfare (e.g., see Copeland et al., 2022, for a review). One way of improving the

welfare balance of this type of policies is to rebate tax revenues to households. In Table 5, we

illustrate this point in an extreme scenario in which all tax revenues are rebated to domestic

households. Welfare now increases by between 0.05% and 0.32%, depending on the scenario.

ETS tax + CBAM tariff scenario. While interesting in itself, the ETS scenario can also

be compared with results recovered from a scenario combining a carbon tax and a carbon

tariff as in column (2) of Table 4. Unsurprisingly, total emissions now fall substantially,

as carbon leakage is no longer a profitable adaptation strategy. The overall efficiency of

the policy is almost quadrupled. In this scenario, both clean and dirty input sourcing

contribute to the reduction in emissions. The result follows from French firms reshuffling their

input portfolios towards less emitting countries. The geographical variation in the change

in emissions is interesting. Overall emissions from domestically-produced inputs increase

slightly, together with domestic sourcing. The fall in emissions embedded in inputs sourced

from other ETS-countries’ inputs is still large, although now dominated by inputs sourced

from non-ETS countries. This result explains the reversal of leakage found in simulated data

as shown in Table 3. The carbon tariff does come at a substantial cost, however. The ideal

price index now rises by 0.54%, which leads to a further fall in utility. Again, the fall in

emissions does not outweigh loss of purchasing power, and this hold for all the scenarios we

consider. For the policy to be welfare-improving, tax revenues must be entirely refunded to

domestic households.

6.2.3 Geography of leakage

We next dig deeper into the geography of input portfolio reshuffling. Results are summarized

in Figure 7 for a subset of the most affected countries. Panel (a) illustrates the change in

emissions (in millions of tons of CO2) under the ETS and ETS+CBAM scenarios. Panel (b)

41See Appendix B.4 for further details on the calibration of µi, and the utility trade-off between emission
declines vs. price increases in these different scenarios.
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Figure 7. The geography of leakage

(a) Emissions leakage (b) Import leakage

Notes: This figure plots the change in imports in emissions in millions of tons (panel (a)) and in millions
of euros (panel (b)) when imposing either a carbon tax, or a carbon tax and a carbon tariff. Results are
restricted to the 5 most impacted countries. The breakdown by input type is displayed in Figure D.11.

displays the corresponding change in input purchases (in millions of euros). Results for the

rest of the sample are provided in Figure D.10.

As discussed earlier, both carbon policies increase domestic input sourcing. This is due

to French producers’ relatively lower emission intensities, combined with the fact that all

firms source some inputs domestically given the model’s assumptions. Second, imports from

two highly taxed ETS countries – Bulgaria (BG) and Romania (RO) – drop significantly

under the ETS tax regime, and this decline is only slightly mitigated by the CBAM tariff.

For non-ETS countries, imports from Russia (RU) and China (CN) initially rise following

the ETS tax but then decrease more than proportionately under the CBAM tariff. In value

terms, the portfolio reshuffling towards French inputs is massive. However, the impact on

local emissions is relatively mild, an increase of 1 million tons, while emissions from other

countries fall by 0.5 to 3 million tons given much larger emission intensities.

6.2.4 Heterogeneous leakage effects

We next focus on the model’s predictions regarding leakage along the distribution of firm

productivity. Digging into the microeconomic underpinnings of the aggregate results not

only improves our understanding of the model’s quantitative results, but further allows us

to examine the redistributive consequences of carbon policies. Figure 8 plots statistics on

leakage of dirty imports to non-ETS suppliers in terms of import shares (Panel I) and the

extensive margin (Panel II) for different firm-level productivity bins.

The first point to note is that there is no leakage observed in the bottom 75% of the firm
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Figure 8. Model leakage and firm productivity

Panel I. Import share leakage

(a) Absolute terms (b) Percentage change from baseline

Panel II. Extensive margin leakage

(c) Absolute terms (d) Percentage change from baseline

Notes: This figure plots model-based leakage values along the firm productivity dimension. Panel I plots
the import share of dirty products from non-ETS countries, while panel II plots the share of firms importing
dirty inputs from non-ETS countries within each productivity bin. Sub-figures (a) and (c) present statistics
in absolute values, while the sub-figures (b) and (d) present percentage changes from baseline.

productivity distribution as these firms do not import dirty products from non-ETS countries

in any of the three scenarios. Beyond the 75th percentile, the share of dirty inputs sourced

from non-ETS countries increases with productivity, reaching almost 50% of intermediate

consumption in the top percentile of the distribution. Once the ETS tax is introduced, this
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import share increases, together with firms’ propensity to import from non-ETS countries.

The elasticity of import shares to the tariff is especially strong between the 75th and 95th

percentiles, largely driven by the extensive margin contribution of a 16% increase in the

share of firms that start to import dirty products from non-ETS countries. Leakage in

percentage change falls for firms in the 95-99% and top 1% bins, and the contribution of

the extensive margin to that change becomes marginal. The reversal of carbon leakage from

the implementation of the CBAM reveals some interesting patterns along the productivity

distribution. Specifically, there is no longer a monotonic change in leakage, instead firms in

the 95-99% bin tend to reverse the largest proportion of their previous leakage.

7 Conclusion

This paper provides evidence on how firms’ supply chain decisions adapt in response to

carbon taxes. By constructing a novel dataset using information from the EU’s ETS and

CBAM, we demonstrate that French firms modified their sourcing of dirty products as the

EU ETS tightened. Specifically, firms increased imports from non-ETS countries, leading to

carbon leakage both in terms of trade shares and at the extensive margin, as they established

new supply relationships with dirty non-ETS foreign producers.

We rationalize these results using a heterogeneous firm model of sourcing decisions. Cal-

ibrated to the observed sourcing behavior of French firms, our baseline quantitative findings

indicate that implementing a carbon tax to mimic the ETS and a carbon tariff to replicate the

CBAM leads to higher price levels. These effects persist even as firms adjust their sourcing

strategies across clean and dirty products, as well as between ETS and non-ETS countries.

Notably, the quantitative analysis reveals only small decreases in emissions associated with

the inputs used by French producers.

These results underscore the importance of considering the indirect impacts of policy

through supply chain linkages and highlight the benefits of taking a granular approach to

firms’ choices. There are multiple margins through which firms can adapt to climate policy,

making it essential to analyze these dynamics comprehensively.
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Online Appendix

A Data Construction Details

A.1 Clean vs. Dirty Goods

In addition to the details provided in the main text, below are more precise explanations

about the construction of the underlying firm-product level dataset and how we delineate

clean vs. dirty goods.

We begin with a time series-consistent list of products, harmonized over 1995-2020, using

the C3 algorithm detailed in Bergounhon, Lenoir and Mejean (2018). Starting from a list of

10,174 CN products in the French customs data, we end up with 7,051 harmonized product

codes at this stage. We then use the HS 2002 to Bec Rev.4 conversion table provided by

the UN to exclude capital goods (BEC categories 41 and 521).42 In doing so, we focus on

trade in intermediate inputs, the core of our analysis. This removes 784 harmonized product

categories.

Then, as described in the main text, we tag as dirty those goods that are listed in the

CBAM, or fall into ETS activities (Table C.1 and Table C.2). At this stage of the data

construction, the mapping uses the definition of products at the 8-digit level of the CN

nomenclature. We can however convert the list into the harmonized product nomenclature

(HS) as CN products grouped into the same harmonized product category always fall into

the same category of clean or dirty products.

Table C.3 provides statistics about the prevalence of dirty products, by HS chapter.43

1,464 products are classified as dirty using the combined list of ETS and CBAM products.

The list covers some HS chapters entirely such as Mineral Fuels or Chemicals while being

defined at a more granular level for products such as cement or fertilisers. See details in

Tables C.1 and C.2.

A.2 Defining clean and dirty sectors

In addition to categorizing goods as either dirty or clean, it is necessary to measure the

intensity of dirty input usage of each sector for two reasons. First, the model-based quanti-

tative analysis requires information on the dirtiness intensity of firms’ input purchases. The

administrative firm-level dataset only has information on total intermediate usage, so we

rely on the intensity of dirty inputs used by a firm’s sector to proceed. Second, the empirical

42See https://unstats.un.org/unsd/classifications/Econ.
43Any HS chapter that is not listed in Table C.3 is composed of clean products only.
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and quantitative analyses are restricted to a subset of dirty-intensive sectors, which we again

define based on measures of dirtiness intensities.

We do so using an Input-Output (IO) table at the sector level. We begin by computing

sectoral dirtiness intensities using the 2011 INSEE IO table, which contains 138 NAF sec-

tors.44 We first establish a mapping between the NAF nomenclature and the list of ETS

sectors to recover a list of dirty-producing sectors (see details in Table C.4, column (1) and

(4)). For example, ETS activity 31 (manufacture of glass) maps to sector C23A (manufac-

ture of glass and glass products). This procedure yields 14 dirty-producing NAF sectors,

including 12 in manufacturing. We then use the IO table to categorize dirty-intensive input-

user sectors as those manufacturing sectors relying on dirty-producing sectors for at least

10% of their intermediate consumption. This identifies 44 sectors that intensively use dirty

inputs for final production (Table C.4, column (2) and (5)).

Lastly, to accurately compute CBAM tariffs and align with policy, it is essential to

classify the sectors that produce CBAM goods. According to the list of CBAM goods in

Table C.2, there are eight goods at the HS2 level, excluding electricity, which is not included

in our dataset. Using our HS to NAF conversion table, we identify 7 sectors involved in the

production of these 8 CBAM goods.45 This classification will be used for calculating the

CBAM tariffs, and is depicted in columns (3) and (6) of Table C.4.

A.3 Core and non-core inputs

The empirical analysis is restricted to a comparison of dirty and clean inputs, within a subset

of the firm’s core inputs. In concrete terms, we first use the IO table to identify the list of

the most important upstream sectors for each downstream sector, using a 10% intermediate

consumption threshold. Then, given a mapping between products and NAF sectors, we are

able to identify the set of core inputs for each sector. We restrict our sample to imports of

those core products. We restrict the sample this way in order to avoid using, as either a

treated or control observation in our reduced-form regressions, a product that is a marginal

input in the firm’s production function. Indeed, when studying the extensive margin, we will

balance the panel with 0’s whenever a firm does not import a given product. Restricting our

sample to core products is hence necessary for practical reasons, but also to avoid marginal

products to pollute the estimation.46 Table C.6 provides statistics on the number and import

44NAF stands for Nomeclature Agrégée 2008, which is a French sector classification that can be linked to
NACE rev.2 sectors. The earliest version for such a disaggregated level is 2011. This is the only instance
where we depart from 2004, pre-ETS, as a calibration year.

45NAF sectors C20A, C24A, C24B, C25A, C25B, C25E, C27A. We only focus on sectors which produce
HS goods which contain more than 5 cbam NC goods.

46For example, imagine that the dataset indicates that a firm in the NAF sector for plastic products (C22B)
imports cotton goods (HS classification starting with 52). Since cotton goods are not core products for firms
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share of core products, by importing sector. Overall across manufacturing sectors, focusing

on core inputs reduces the number of products from 50K to less than 9K while retaining

64% of the overall value of imports.

A.4 Firm-level sourcing shares

We next move on to determining the overall mix of types of inputs at the firm level, broken

down by origin country. To do so, we exploit three datasets. We first use 2004 (pre-ETS)

information from the administrative firm-level balance sheet and income statement dataset

from INSEE-FICUS, which provides information on firms’ total use of intermediate goods

and production. We match these data with the detailed sector-level IO dataset, which allows

us to quantify the share of firm inputs that are either clean or dirty (Section A.2). We merge

firm- and sector-level information together and assume that every firm mimics its sector’s

input mix between clean and dirty. We make this assumption as we only have information on

the total value of intermediate goods used by firms and not the breakdown of this total into

types of products. Then, using firm-level customs data and the list of dirty products from

Section 2.1, the difference between intermediate consumption of each type of inputs and the

corresponding input-specific value of imports is considered to be sourced domestically. This

yields a 2004 dataset which will be used to calibrate the model, in which we have, at the firm

level, the share of input purchases by input type and by origin country, including domestic

products.

A.5 Calibration of carbon taxes

We calculate the input × country level of taxes using WIOD’s environmental accounts. This

dataset provides yearly emissions levels (in tons of CO2) for 56 ISIC Rev.4 sectors across

44 countries (including EU28, Rest Of The World - RoW, and 15 other major economies).

The dataset covers the period from 2000 to 2016, and we use the year 2004 for our analysis.

By leveraging WIOD’s 2016 IO table for 2004, we can determine the total production for

each sector × country combination, enabling us to compute an emission intensity for each

combination. We use WIOD’s IO table rather than INSEE’s because the emissions data is

tailored to WIOD’s IO structure. From this, using a given price of euro per ton of CO2, we

can calculate the level of direct taxes for our counterfactuals.

in sector C22B, including them in the estimation and balancing the panel with zeros would significantly
increase the number of null values in the dataset. This would not only extend computing time but also
potentially distort the estimation, as products classified under 52 are not central to the choice set of firms
in C22B. For consistency reasons, we keep the same dataset when estimating the intensive margin, this time
using the share of imports rather than a dummy variable as the dependent variable.
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We also account for input-output linkages to compute the full tax incidence of the vector

of taxes on each sector × country. We proceed as follows. Denote WIOD’s IO matrix as Ω, a

(56× 44)× (56× 44) matrix of technical coefficients. We then compute the Leontieff inverse

Ψ = (I − Ω)−1, where each entry Ψij captures both the direct and indirect ways through

which i (a sector × country) uses j (another sector × country).

Next, we calculate the level of direct taxes under our counterfactual scenario. Direct taxes

are calculated as the product of a dummy equal to one if the country×sector is covered in

the corresponding counterfactual, times the emissions intensity recovered from the WIOD,

times the level of output, times the assumed price of carbon.

We then multiply this direct tax burden by the Leontief inverse Ψ to determine the

total tax burden for any firm purchasing from these 56 sectors × 44 countries. Finally, we

aggregate the corresponding tax rates into two broad sectors (clean and dirty) using weights

based on French input purchases. Countries in our sample that are not included in WIOD

are assigned the values calculated for the Rest of the World aggregate of the WIOD.

Finally, we take into account the slightly different coverages of the ETS and CBAM

systems (see Tables C.1 and C.2). For the carbon tax counterfactual, we classify the sectors

listed in columns (1) and (4) of Table C.5 as dirty, with all other sectors considered clean.47

For the carbon tax + carbon tariff counterfactual, we additionally expand taxation to the

dirty CBAM sectors listed in columns (2) and (5) of Table Table C.5.

B Model Details

B.1 Solving the model with the algorithm

In this sub-section, we derive the parameter conditions under which the types of algorithm

described in Jia (2008); Arkolakis, Eckert and Shi (2023) help us solve our model.

B.1.1 Definitions

It is useful to first define the following objects. Denote by I = {IC , ID} the finite discrete

set of sourcing options for the firm, with I t being the set of countries available to source

input t from. Then, define the power set P(I) = {I | I ⊆ I} as the collection of all possible

subsets of I. Hence, one can see I as the choice set of the firm, I as the sourcing strategy

set and P(I) as the sourcing strategy space. We denote by It(φ) the set of countries for

which firm φ has paid the associated fixed cost of offshoring type t inputs,
{
wf t

ij

}
j∈It(φ)

. In

47Note that sectors in Table C.4 follow the NAF nomenclature, whereas WIOD uses ISIC Rev.4. This is
why we use Table C.5 to classify them as dirty and clean
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other words, I(φ) =
{
IC(φ), ID(φ)

}
∈ P(J) is firm φ’s sourcing strategy. Then, define the

following concepts in our context.

Definition 1 (Single Cross Differences in Choices (SDC-C) from below) Take the

firm’s profit function (6):

πi(φ; I(φ)) =
(
c(φ; I(φ))

φ

)1−σ

Bi − wi

∑
j∈ID(φ)

fD
ij − wi

∑
j∈IC(φ)

fC
ij ,

The profit function is said to obey SDC-C from below, if an element j, which addition to

a given sourcing strategy set results in a positive marginal value, also retains its positive

marginal value when other elements are added to the initial sourcing strategy set. That is, if

for all elements j ∈ I t and sourcing strategies I1(φ) ⊂ I2(φ) ∈ P(J),

πi (φ; I1(φ) ∪ j)− πi (φ; I1(φ) \ j) ≥ 0 ⇒ πi (φ; I2(φ) ∪ j)− πi (φ; I2(φ) \ j) ≥ 0.

Definition 2 (Single Cross Differences in Choices (SDC-C) from above) The profit

function is said to obey SDC-C from above, if an element j, which addition to a given sourc-

ing strategy set results in a positive marginal value, also retains its positive marginal value

when other elements are removed from the initial sourcing strategy set. That is, if for all

elements j ∈ I t and sourcing strategies I1(φ) ⊂ I2(φ) ∈ P(J),

πi (φ; I2(φ) ∪ j)− πi (φ; I2(φ) \ j) ≥ 0 ⇒ πi (φ; I1(φ) ∪ j)− πi (φ; I1(φ) \ j) ≥ 0.

B.1.2 Conditions for SDC-C to hold

We next derive the sufficient and necessary conditions for the SDC-C from below and from

above conditions to hold.

SDC-C from below versus from above of the profit function. The profit function

can be written as:

πi(φ; I(φ)) = φσ−1
[(
AD

) 1−η
1−ρ

(
γDΘD

i (φ; ID(φ))
) η−1

θD +
(
AC

) 1−η
1−ρ

(
γCΘC

i (φ; IC(φ))
) η−1

θC

] 1−σ
1−η

Bi

− wi

∑
j∈ID(φ)

fD
ij − wi

∑
j∈IC(φ)

fC
ij ,

where

Θt
i

(
φ; It(φ)

)
=

∑
k∈It(φ)

T t
k

(
τ tikwk

)−θt
, t = C,D

is the sourcing capability of firm φ for inputs of type t = C,D.
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Note that the sourcing capability Θt
i(φ; It(φ)) is monotonically increasing in the sourcing

strategy It(φ). Hence, one can take derivatives with respect to Θt
i to check for SDC-C from

below/above.

Start with the first derivative, with some slight simplifications in the notation:

∂πi

∂Θt
i

= φσ−1Bi
σ − 1

θt
(
AD(ΘD

i ) + AC(ΘC
i )
)σ−η

η−1
At(Θt

i)

Θt
i

− wε,

where At(Θt) ≡ (At)
1−η
1−ρ (γtΘt

i)
η−1

θt , and ε > 0 is the added fixed cost element linked to the

increase in the size of It(φ). The first derivative can only be positive if σ > 1. It can

also be negative, depending on the value of wε. Assume it is positive. We now want to

check whether this positive change in the profit function remains positive if we increase the

original sourcing strategy set, which is the definition of SDC-C from below. Taking again

this continuous approach, we will hence derive conditions under which the second and the

cross derivatives are positive.

Let us now take the cross-derivative:

∂2πi

∂ΘC
i ∂Θ

D
i

= φσ−1Bi
σ − 1

θD
σ − η

θC
(
AC(ΘC

i ) + AD(ΘD
i )

)σ−2η+1
η−1

AD(ΘD
i )

ΘD
i

AC(ΘC
i )

ΘC
i

.

Therefore, for σ > 1 and σ > η, the cross derivative is always positive.

The next step is to look at the second derivative:

∂2πi

∂ Θt
i
2 = φσ−1Bi

(σ − 1)(σ − η)

(θt)2
(
AC(ΘC

i ) + AD(ΘD
i )

)σ−2η+1
η−1

(
At(Θt

i)

Θt
i

)2

+φσ−1Bi
(σ − 1)(η − 1− θt)

(θt)2
(
AC(ΘC

i ) + AD(ΘD
i )

)σ−η
η−1

At(Θt
i)

(Θt
i)

2

=

[
φσ−1Bi

σ − 1

θt
(
AD(ΘD

i ) + AC(ΘC
i )
)σ−η

η−1
At(Θt

i)

Θt
i

]
× 1

θtΘt
i

[
(σ − η)

At(Θt
i)

AC(ΘC
i ) + AD(ΘD

i )
+ (η − 1− θt)

]
.

We assumed from the first derivative that φσ−1Bi
σ−1
θt

(
AD(ΘD

i ) + AC(ΘC
i )
)σ−η

η−1 At(Θt
i)

Θt
i

> 0,

and Θt
i as well as θt are positive. So the first part of the above expression is positive.

Therefore, we are interested in the sign of:

(σ − η)
At(Θt

i)

AC(ΘC
i ) + AD(ΘD

i )
+ (η − 1− θt),

which is positive if and only if (we have σ > η from the cross derivatives):

At(Θt
i)

AC(ΘC
i ) + AD(ΘD

i )
>

1 + θt − η

σ − η
.

To summarize, our profit function exhibits SCD-C from below if the following conditions

hold:
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1. σ > 1,

2. σ > η (from the cross derivatives),

3.
AD(ΘD

i )

AC(ΘC
i )+AD(ΘD

i )
> 1+θD−η

σ−η
,

4.
AC(ΘC

i )

AC(ΘC
i )+AD(ΘD

i )
> 1+θC−η

σ−η
.

On the other hand, our profit function exhibits SCD-C from above if the second- and

cross-derivatives are negative, while the first derivative is still assumed to be positive. This

holds if the following conditions are met:

1. σ > 1,

2. σ < η (from the cross derivatives),

3.
AD(ΘD

i )

AC(ΘC
i )+AD(ΘD

i )
> 1+θD−η

σ−η
,

4.
AC(ΘC

i )

AC(ΘC
i )+AD(ΘD

i )
> 1+θC−η

σ−η
.

Note that the only difference between SCD-C from above and from below is how η

compares to σ. Since in the SCD-C from above case σ < η, the sign on the conditions (3.)

and (4.) are unchanged. In the next section, we will derive the necessary conditions for

either of these cases to apply.

Necessary conditions for SCD-C from below. The conditions for SCD-C from below

are:

SCD-C from below:

1. σ > 1,

2. σ > η (from the cross derivatives),

3.
AD(Θt

i)
AC(ΘC

i )+AD(ΘD
i )

> 1+θD−η
σ−η

,

4.
AC(Θt

i)
AC(ΘC

i )+AD(ΘD
i )

> 1+θC−η
σ−η

.

Note that At (Θt
i) = (At)

1−η
1−ρ (γtΘt

i)
η−1

θt is increasing (resp. decreasing) in Θt
i if η > 1 (resp.

η < 1).

As the left-hand side of conditions 3 and 4 is bounded between 0 and 1, a set of sufficient

conditions is σ > 1, σ > η and Max(1 + θC , 1 + θD) < η. These conditions are very
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constraining though and we will thus rely on necessary conditions. Conditional on conditions

1 and 2 being met, we need to find the two lower bounds of the left hand side, and make

sure the two inequalities hold in that case.

From here, we need to consider two cases depending on whether the clean and dirty

inputs are substitutes or complements (η > 1 or η < 1).

Case 1: Clean and dirty inputs are substitutes (η > 1): Under substitutable inputs,

a set of necessary conditions for the problem to exchibit SCD-C from below is:

1. σ > 1,

2. σ > η (from the cross derivatives),

3.
AD(ΘD

i )
AC(Θ̄C

i )+AD(ΘD
i )

> 1+θD−η
σ−η

,

4.
AC(ΘC

i )
AC(ΘC

i )+AD(Θ̄D
i )

> 1+θC−η
σ−η

,

where At
(
Θt

i

)
and At

(
Θ̄t

i

)
denote the lowest and highest bounds of function At which cor-

respond to a pure domestic sourcing strategy and a sourcing from all possible countries I t,

respectively:

Θt
i = T t

i

(
τ tiiwi

)−θt
,

Θ̄t
i =

∑
k∈It

T t
k

(
τ tikwk

)−θt
,

where I t, again, encompasses all countries.

Case 2: Clean and dirty inputs are complements (η < 1): Under complementary

inputs, a set of necessary conditions for the problem to exhibit SCD-C from below is:

1. σ > 1,

2.
AD(Θ̄D

i )
AC(ΘC

i )+AD(Θ̄D
i )

> 1+θD−η
σ−η

,

3.
AC(Θ̄C

i )
AC(Θ̄C

i )+AD(ΘD
i )

> 1+θC−η
σ−η

,

where At
(
Θt

i

)
and At

(
Θ̄t

i

)
denote the highest and lowest bounds of function At which cor-

respond to a pure domestic sourcing strategy and a sourcing from all possible countries I t,

respectively.
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Necessary conditions for SDC-C from above. The conditions for the operational

profit to exhibit SDC-C from above are:

1. σ > 1,

2. σ < η (from the cross derivatives),

3.
AC(ΘC

i )
AC(ΘC

i )+AD(Θ̄D
i )

> 1+θC−η
σ−η

,

4.
AC(ΘD

i )
AC(ΘD

i )+AD(Θ̄C
i )

> 1+θD−η
σ−η

.

Note that submodularity cannot arise if clean and dirty inputs are complements. Note

that the (stringent) sufficient conditions for the problem to be submodular are σ > 1, σ < η

and Min(1 + θC , 1 + θD) > η.

B.1.3 Algorithm

Theorem 1 in Arkolakis et al. (2023) explains how their algorithm solves the profit maxi-

mization problem whenever the objective function exhibits either SDC-C from above or from

below.

B.2 Other model equations

This section provides additional details on key model equations and terms mentioned in the

main text, but included here for brevity.

Firm-level bilateral type-t input purchases M t
ij(φ):

M t
ij(φ) = χt

ij(φ; It(φ))

(
cti(φ; It(φ))

ci(φ; ID(φ), IC(φ))

)1−η

(σ − 1)

(
ci(φ; ID(φ), IC(φ))

φ

)1−σ

Bi

=
T t
j

(
τ tijwj

)−θt

Θt
i(φ; It(φ))

 (At)
1

1−ρ (γtΘt
i(φ; It(φ)))

−1/θt[
(AD)

1−η
1−ρ

(
γDΘD

i (φ; ID(φ))
) η−1

θD + (1− aD)
1−η
1−ρ

(
γCΘC

i (φ; IC(φ))
) η−1

θC

] 1
1−η


1−η

(σ − 1)φσ−1

[(
AD

) 1−η
1−ρ

(
γDΘD

i (φ; ID(φ))
) η−1

θD + (1− aD)
1−η
1−ρ

(
γCΘC

i (φ; IC(φ))
) η−1

θC

] 1−σ
1−η

Bi

= (σ − 1)Bi γ
t

η−1

θt φσ−1

[(
AD

) 1−η
1−ρ

(
γDΘD

i (φ; ID(φ))
) η−1

θD + (1− aD)
1−η
1−ρ

(
γCΘC

i (φ; IC(φ))
) η−1

θC

] η−σ
1−η

Θt
i(φ; It(φ))

η−1−θt

θt T t
j

(
τ tijwj

)−θt (
At

) 1−η
1−ρ .
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Aggregate bilateral type-t input purchases M t
ij(φ): Aggregating M t

ij(φ) across firms

that are sourcing from j:

M t
ij = Ni

∫ ∞

φ̃i

M t
ij(φ)1

t
ij(φ)dGi(φ). (B.1)

Free-entry, mass of firms and counterfactual estimation The model delivers the

following free-entry condition:

∫ ∞

φ̃

(c(φ; ID(φ), IC(φ))

φ

)1−σ

Bi − wi

∑
j∈ID(φ)

fD
j − wi

∑
j∈IC(φ)

fC
j

 dG(φ) = wife, (B.2)

where φ̃ denotes the minimum productivity for profitable entry into the manufacturing sector.

Using this equation, any counterfactual proceeds as follows. We take the cost of entry and

all other parameters as fixed, except for Bi, solve for firms optimal sourcing decisions, and

then solve for a value of Bi which allows equation (B.2) to hold. We then solve our economy

with the updated sourcing potentials and market demand Bi.

Finally, the equilibrium measure Ωi of entrants in the manufacturing sector is solved

for using the above free-entry condition together with the definition of Bi under constant

mark-ups:

Ωi =
Ei

σ
[∫∞

φ̃

(∑
j∈ID(φ) f

D
ij +

∑
j∈IC(φ) f

C
ij

)
dG(φ) + fe

] . (B.3)

B.3 Construction of the random shocks

To draw the fixed costs shocks, we follow Antràs et al. (2017) closely. We first draw a van der

corput sequence sequence of size S = 100, i.e., we construct a vector of 1
2
, 1
4
, 3
4
, 1
8
, 5
8
, 3
8
, 7
8
, 1
16
,

9
16
, · · · 5

32
, a low-discrepancy sequence of 100 elements over the unit interval.

Then, for each country × input, we compute a random permutation of the von der corput

sequence above. We then calculate a vector of 100 shocks for each country times input, where

each row of the vector of shocks is computed using an inverse standard normal distribution

(mean 0 and variance 1) evaluated at the corresponding row in the permuted von der corput

sequence.

For example, if the permuted sequence is such that the first element is 1
4
, the new vector

of shocks will take a value of −0.6745 in the first position. If the second element is 1
2
, the

new vector of shock will take a value of 0 in the second position, etc. This yields, for each

country × input, a vector of 100 identical shocks, randomly permuted. Given the length

of the van der corput sequence and the fact that we use a standard normal, the maximum

shock for each country vector is 1.8627, and the minimum −2.4176.
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Finally, we interact the productivity draws (we make 360 such draws) with this vector

of shocks of size 100. In particular, for each productivity value φ we drew from the Pareto

distribution, we duplicate it 100 times and assign a vector of random shocks of size equal to

the number of country times the number of input types. The first duplication of each φ gets

assigned the first elements of the country × input vector. Hence, in total, the interaction of

those 100 random shocks per country and the 360 different productivity draws yields 36,000

firms.

Note the slight abuse of notation when we introduce heterogeneous fixed costs. While

in the model with homogeneous fixed costs φ designated both a firm and its productivity

parameter, a firm in the SMM with heterogeneous fixed costs is defined as the interaction of

its productivity φ and its vectors of fixed costs f t
ij(φ), t = C,D.

B.4 Calibration of µi

We borrow from Shapiro (2021). In particular, we express agents’ utility in country i as:

Ui = H1−α
i Cα

i [1 + µi (CO2 − CO2,baseline)]
−1 ,

where Hi is the homogeneous good and Ci is the CES manufacturing aggregator. CO2 is the

amount of CO2 emissions (in tons) associated with producing the inputs for the household’s

manufacturing goods, and µi is a term to be calibrated. As explained in the main text, this

specification is designed to measure damages from changes in emissions only, and we thus

abstract from baseline climate damages.

Indirect utility is given by

Vi =
Ii

N1−α
i Pα

i

[1 + µi (CO2 − CO2,baseline)]
−1 ,

where Ii is total nominal spending, Ni denotes the price of the homogeneous good, and

Pi represents the CES price index of the manufactured final goods.

We calibrate the value of µi so that one additional ton of carbon reduces welfare by a given

monetary amount (in euros) Di. Hence, we compute ∂Vi

∂CO2
= Di, and find µi accordingly. As

explained in the main text, we assume that one extra ton of carbon has a global net damage

of e200 in the main counterfactual. We also use e1500 to reflect higher recent estimates

(Bilal and Känzig, 2024; Rennert et al., 2022; Moore et al., 2024).

Only a share of these e200 falls on France. If we assume that all countries are affected by

climate change in similar way, then France should receive a damage proportional to its share

of global GDP, about 2.96%. We would thus get that Di = −2.96%× e200 = − e5.92.48

482.96% is obtained using the 2022 value of the 2015 constant USD GDP series from the World bank.
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However, in addition to GDP differences, countries are affected heterogeneously. Nord-

haus and Boyer (2000) calculate the damage di due to a 2.5
◦C warming for each of 13 regions,

expressed as a portion of GDP, as follows: US 0.45%, China 0.22%, Japan 0.50%, OECD Eu-

rope 2.83%, Russia −0.65%, India 4.93%, Other High Income −0.39%, High Income OPEC

1.95%, Eastern Europe 0.71%, Middle Income 2.44%, Lower-middle Income 1.81%, Africa

3.91%, and Low Income 2.64%. Denoting country i’s GDP as Yi, we then proceed as in

Shapiro (2016) and compute Di = − diYi∑
j djYj

× e200.
Would all countries have identical di’s, we would get back to Di = −2.96%× e200 = −

e5.92. However, since France has a value of di which is higher than average (2.83%), we

then get that Di = −6.75%× e200 = − e13.5. This is the value we will use for Di. When

turning to a social cost of carbon of e1500, we thus get Di = − e101.25. In addition, when

computing version for the EU household, we compute
∑

i∈EU
diYi∑
j djYj

and get Di = −38.30%×
e200 = − e76.6 and Di = −38.30%× e1500 = − e574.5.

Having computed Di, we then turn to the computation of µi To do so, we take the

derivative of Vi with respect to CO2, set it equal to Di, rearrange terms and get that

µi =
−Di·[1+µi(CO2−CO2,baseline)]

2

Ii

N1−α
i

Pα
i

. We evaluate this term at baseline values, i.e. with CO2 =

CO2,baseline, so our formula yields µi =
−Di
Ii

N1−α
i

Pα
i

. Since our model does not deliver a value for

Ni and Ii, we proxy the denominator with real GDP.

Note that both the numerator and denominator of µi are affected by the change in

geographical area considered. Going from a French household to an EU one increases the

numerator and the denominator in similar proportions, such that for a given social cost of

carbon, the two µi’s would not differ widely. This is due to the fact that we model damages

as multiplicative, and thus real income shows up in the partial derivative of Vi. Only a

change in the social cost of carbon affects µi significantly.
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C Additional Tables

Table C.1. Mapping of ETS-covered sectors to HS products

ETS sector HS products
Code Description Code Description

1 Combustion install (thermal input > 20MW) 27.16 Electrical energy
2 Mineral oil refineries 27.09-27-15,68.07 Petroleum oils, gases, jelly, coke, bituminen, asphalt (articles thereof)
3 Coke ovens 27.01-27.06 Coal, Lignite, Peat, Coke, Coal Gas, Mineral Tars
4 Metal ore (including sulphide ore) roasting or sintering Install 26 ex. 26.18-26.21 Metal ores and concentrates
5 Install for the prod of pig iron or steel 72 ex 72.04 Iron and steel (ex waste)
6 Install for the prod of cement clinker or lime 25.21-25.23 Lime and cement
7 Install for the manuf of glass 70.01-70.06 Glass and glassware
8 Install for the manuf of ceramic products 69 Ceramic products
9 Industrial plants for the prod of pulp, paper and board 47-48 ex 47.07 Pulp of wood, Paper and paperboard (except waste)
10 Aircraft operator activities
20 Combustion of fuels 27.16 Electrical energy
21 Refining of mineral oil 27.09-27.15 Petroleum oils, gases, jelly, coke, bituminen and asphalt
22 Prod of coke 27.04, 27.08, 27.13 Coke of coal, lignite, petroleum
23 Metal ore roasting or sintering 26 ex. 26.18-26.21 Metal ores and concentrates
24 Prod of pig iron or steel 72 ex. 72.04 Iron and Steel (ex waste)
25 Prod or processing of ferrous metals 73 Articles of iron or steel
26 Prod of primary aluminium 76 Aluminium and articles thereof
27 Prod of secondary aluminium 76 Aluminium and articles thereof
28 Prod or processing of non-ferrous metals 74-75,78-81 Non-ferrous metals and articles thereof
29 Prod of cement clinker 25.23 Cement
30 Prod of lime, or calcination of dolomite/magnesite 25.21-25.22, 25.18-25.19 Lime, dolomite, magnesite
31 Manuf of glass 70.01-70.06 Glass and glassware
32 Manuf of ceramics 69 Ceramic products
33 Manuf of mineral wool 68.06 Slag wool, rock wool and similar mineral wools
34 Prod or processing of gypsum or plasterboard 68.09 Articles of plaster
35 Prod of pulp 47 ex 47.07 Pulp of wood (except waste)
36 Prod of paper or cardboard 48 Paper and paperboard
37 Prod of carbon black 28.03 Carbon blacks and other forms of carbon nes
38 Prod of nitric acid 28.08 Nitric and sulphonitric acids.
39 Prod of adipic acid 29.1712 Adipic acid
40 Prod of glyoxal and glyoxylic acid 29.12, 29.18 Aldehydes, Carboxylic acids
41 Prod of ammonia 28.14 Ammonia, anhydrous or in aqueous solution
42 Prod of bulk chemicals 28-29 Organbic and inorganic chemicals
43 Prod of hydrogen and synthesis gas 28.04 Hydrogen, rare gases and other non-metals
44 Prod of soda ash and sodium bicarbonate 28.3630 Sodium hydrogencarbonate (sodium bicarbonate)
45 Capture of greenhouse gases under Directive 2009/31/EC
46 Transport of greenhouse gases under Directive 2009/31/EC
47 Storage of greenhouse gases under Directive 2009/31/EC
99 Other activity opted-in pursuant to Article 24 of Directive 2003/87/EC

Notes: This table shows the mapping between the coverage of ETS and HS products. The list of ETS
sectors is taken from the EUTL.
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Table C.2. List of HS products covered by the Carbon Border Adjustment Mechanism

Category Code Description

Cement 25.07 Other kaolinic clays
25.2310 Cement clinkers
25.2321 White Portland cement, whether or not artificially coloured
25.2329 Other Portland cement
25.2330 Aluminous cement
25.2390 Other hydraulic cements

Electricity 2716 Electrical energy
Fertilisers 28.08 Nitric acid; sulphonitric acids

28.14 Ammonia
28.3421 Nitrates of potassium
31.02 Mineral or chemical fertilisers, nitrogenous
31.05 Mineral or chemical fertilisers, other
ex. Except
31.0560 Mineral or chemical fertilisers containing phosphorus and potassium

Iron and steel 72 Iron and steel
ex. Except
72.0220 Ferro-silicon
72.0230 Ferro-silico-manganese
72.0250 Ferro-silico-chromium
72.0270 Ferro-molybdenum
72.0280 Ferro-tungsten and ferro-silico-tungsten
72.0291 Ferro-titanium and ferro-silico-titanium
72.0292 Ferro-vanadium
72.0293 Ferro-niobium
72.029910 Ferro-phosphorus
72.029930 Ferro-silico-magnesium
72.029980 Other
72.04 Ferrous waste and scrap; remelting scrap ingots and steel

Iron and steel 26.0112 Agglomerated iron ores and concentrates, other than roasted iron pyrites
73.01 Sheet piling of iron or steel
73.02 Railway or tramway track construction material of iron or steel
73.03 Tubes, pipes and hollow profiles, of cast iron
73.04 Tubes, pipes and hollow profiles, seamless, of iron (other than cast iron) or steel
73.05 Other tubes and pipes, the external diameter of which exceeds 406,4 mm, of iron or steel
73.06 Other tubes, pipes and hollow profiles of iron or steel
73.07 Tube or pipe fittings of iron or steel
73.08 Structures and parts of structures of iron or steel
73.09 Reservoirs, tanks, vats and similar containers of iron or steel, of a capacity exceeding 300 l
73.10 Tanks, casks, drums, cans, boxes and similar containers of iron or steel, of a capacity not exceeding 300 l
73.11 Containers for compressed or liquefied gas, of iron or steel
73.18 Screws, bolts, nuts, and similar articles, of iron or steel
73.26 Other articles of iron or steel

Aluminium 76.01 Unwrought aluminium
76.03 Aluminium powders and flakes
76.04 Aluminium bars, rods and profiles
76.05 Aluminium wire
76.06 Aluminium plates, sheets and strip, of a thickness exceeding 0,2 mm
76.07 Aluminium foil not exceeding 0,2 mm
76.08 Aluminium tubes and pipes
76.09 Aluminium tube or pipe fittings
76.10 Aluminium structures and parts of structures; aluminium plates, rods, profiles, tubes and the like
76.11 Aluminium reservoirs, tanks, vats and similar containers, of a capacity exceeding 300 litres
76.12 Aluminium casks, drums, cans, boxes and similar containers, of a capacity not exceeding 300 litres
76.13 Aluminium containers for compressed or liquefied gas
76.14 Stranded wire, cables, plaited bands and the like, of aluminium
76.16 Other articles of aluminium

Chemicals 28.0410 Hydrogen

Notes: This table reproduces the list of HS products listed in Regulation (EU) 2023/956 of the European
Parliament and of the Council of 10 May 2023 establishing a carbon border adjustment mechanism.
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Table C.3. Statistics on the prevalence of dirty products, by HS chapter

ETS products CBAM products Dirty products
Code Description Count Value Share Count Value Share Count Value Share

(1) (2) (3) (4) (5) (6)

25 Salt, sulphur, lime & cement 20 .37 7 .25 21 .37
26 Ores, slag & ash 26 .71 1 .11 26 .71
27 Mineral Fuels 109 1 1 .00 109 1
28 Inorganic chemicals 219 1 5 .09 219 1
29 Organic chemicals 435 1 0 0 435 1
31 Fertilisers 0 0 24 .71 24 .71
38 Misc Chemical products 1 .03 0 0 1 .03
47 Pulp of wood 17 .91 0 0 17 .91
48 Paper 61 1 0 0 61 1
68 Articles of stone, cement 7 .10 0 0 7 .10
69 Ceramic products 49 1 0 0 49 1
70 Glass and glassware 131 1 0 0 131 1
72 Iron & steel 321 .98 308 .97 321 .98
73 Articles of iron & steel 249 1 157 .74 249 1
74 Copper 65 1 0 0 65 1
75 Nickel 17 1 0 0 17 1
76 Aluminium 56 1 49 .94 56 1
78 Lead 11 1 0 0 11 1
79 Zinc 11 1 0 0 11 1
80 Tin 8 1 0 0 8 1
81 Other base metals 69 1 0 0 69 1
All 1444 .30 421 .07 1464 .31

Notes: This table shows the number of dirty products and their contribution to the value of French imports,
by HS chapter. Columns (1)-(2) considers dirty products that are covered by ETS rules. Columns (3)-(4) is
based on the list of CBAM products. Column (5)-(6) is the intersection of both lists.
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Table C.4. List of dirty and dirty-intensive NAF sectors

Code Description ETS D-I CBAM Code Description ETS D-I CBAM
(1) (2) (3) (4) (5) (6)

C10A Meat products 0 0 0 C25B Tanks, reservoir, containers of metal 1 1 1
C10B Fish, crustaceans and molluscs 0 0 0 C25C Weapons and ammunition 0 0 0
C10C Fruit and vegetables 0 0 0 C25D Forging of metal; powder metallurgy 1 1 0
C10D Vegetable and animal oils and fats 0 0 0 C25E Cutlery, tools, general hardware 0 1 1
C10E Dairy products 0 0 0 C26A Electronic components 0 1 0
C10F Grain mill prods, and starch products 0 0 0 C26B Computers 0 1 0
C10G Bakery and farinaceous products 0 0 0 C26C Communication equipment 0 1 0
C10H Other food products 0 0 0 C26D Consumer electronics 0 0 0
C10K Prepared animal feeds 0 0 0 C26E Instr. for measuring, testing, navigation 0 1 0
C11Z Beverages 0 1 0 C26F Electromedical equipment 0 1 0
C12Z Tobacco products 0 0 0 C26G Optical instruments 0 1 0
C13Z Textile products 0 0 0 C27A Domestic appliances 0 1 1
C14Z Wearing apparel 0 1 0 C27B Other electric equipment 0 1 0
C15Z Leather products 0 1 0 C28A General-purpose machinery 0 1 0
C16Z Wood products 0 0 0 C28B Agricultural and forestry machinery 0 1 0
C17A Pulp, paper and paperboard 1 1 0 C28C Metal forming machinery 0 1 0
C17B Articles of paper 1 1 0 C28D Other special-purpose machinery 0 1 0
C18Z Printing & reprod. of recorded media 0 1 0 C29A Motor vehicles 0 1 0
C19Z Coke and refined petroleum 1 1 0 C29B Parts & accessories for motor vehicles 0 1 0
C20A Basic chem., fert., plas. and syn. rubber 1 1 1 C30A Ships and boats 0 1 0
C20B Soap and detergents 0 1 0 C30B Railway locomotives 0 1 0
C20C Other chemical products 0 1 0 C30C Air and spacecraft 0 0 0
C21Z Pharmaceutical products 0 1 0 C30D Military fighting vehicles 0 0 0
C22A Rubber products 0 1 0 C30E Other transport equipment 0 1 0
C22B Plastics products 0 1 0 C31Z Furniture 0 1 0
C23A Glass products 1 1 0 C32A Jewellery 0 1 0
C23B Other mineral products 1 1 0 C32B Medical and dental instruments 0 1 0
C24A Basic iron and steel 1 1 1 C32C Other manufacturing 0 1 0
C24B Basic precious & other non-ferr. metals 1 1 1 C33Z Repair and installation 0 1 0
C24C Casting of metals 1 1 0 D35A Electricity, gas, steam, air con. supply 1 0
C25A Structural metal products 1 1 1 D35B Manufacture & distribution of gas 1 0

Notes: The table summarizes, for each NAF sector, whether a sector is covered by ETS regulations (columns
(1) and (4)), whether it is included in the subset of dirty-intensive (‘D-I’) manufacturing sectors (columns
(2) and (5)), and whether it is covered by CBAM (columns (3) and (6)). Sectors D35A and D35B are not
in manufacturing and are thus considered within the list of dirty-producing sectors but not in the set of
dirty-intensive manufacturing sectors.
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Table C.5. List of dirty and dirty-intensive ISIC rev.4 sectors

Code Description ETS CBAM Code Description ETS CBAM
(1) (2) (3) (4)

A01 Crop, animal production 0 0 G46 Wholesale trade 0 0
A02 Forestry and logging 0 0 G47 Retail trade 0 0
A03 Fishing, aquaculture 0 0 H49 Land transport 0 0
B Mining and quarrying 0 0 H50 Water transport 0 0
C10-C12 Food, beverage, tobacco 0 0 H51 Air transport 0 0
C13-C15 Textiles, apparel 0 0 H52 Warehousing, support 0 0
C16 Wood, cork products 0 0 H53 Postal, courier 0 0
C17 Paper products 1 0 I Accommodation, food 0 0
C18 Printing, media reproduction 0 0 J58 Publishing 0 0
C19 Coke, refined petroleum 1 0 J59-J60 Media production, broadcasting 0 0
C20 Chemicals 1 1 J61 Telecommunications 0 0
C21 Pharmaceuticals 0 0 J62-J63 IT services, consultancy 0 0
C22 Rubber, plastic products 0 0 K64 Financial services 0 0
C23 Non-metallic minerals 1 0 K65 Insurance, pensions 0 0
C24 Basic metals 1 1 K66 Financial auxiliaries 0 0
C25 Fabricated metal products 1 1 L68 Real estate 0 0
C26 Computer, electronic goods 0 0 M69-M70 Legal, accounting 0 0
C27 Electrical equipment 0 1 M71 Engineering, testing 0 0
C28 Machinery and equipment 0 0 M72 R&D 0 0
C29 Motor vehicles 0 0 M73 Advertising, market research 0 0
C30 Transport equipment 0 0 M74-M75 Professional, vet services 0 0
C31-C32 Furniture, other mfg 0 0 N Administrative support 0 0
C33 Machinery repair 0 0 O84 Public administration 0 0
D35 Electricity, gas supply 1 0 P85 Education 0 0
E36 Water treatment 0 0 Q Health and social work 0 0
E37-E39 Waste management 0 0 R S Other services 0 0
F Construction 0 0 T Household activities 0 0
G45 Vehicle trade/repair 0 0 U Extraterritorial bodies 0 0

Notes: The table summarizes, for each ISIC sector, whether a sector is covered by ETS regulations (columns
(1) and (3)) and whether it is covered by CBAM (columns (2) and (4)). The table is based on a converting
Table C.4 into ISIC rev.4 sectors in order to use WIOD tables.
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Table C.6. Statistics on core and non-core inputs, by NAF sector

Code Description # Imported # Imported Import share
products core products core products

(1) (2) (3)
C11Z Beverages 940 109 .36
C14Z Wearing apparel 1,853 933 .91
C15Z Leather products 1,306 177 .71
C17A Pulp, paper and paperboard 769 100 .65
C17B Articles of paper 1,297 232 .56
C18Z Printing and reproduction of recorded media 984 185 .67
C19Z Coke and refined petroleum 484 29 .98
C20A basic chemicals, fertilisers, plastics and synthetic rubber 1,738 493 .63
C20B Soap and detergents 1,596 407 .68
C20C Other chemical products 2,079 544 .54
C21Z Pharmaceutical products 1,443 454 .79
C22A Rubber products 1,145 219 .74
C22B Plastics products 2,049 252 .39
C23A Glass products 1,085 183 .65
C23B Other mineral products 1,598 166 .52
C24A Basic iron and steel 1,272 288 .70
C24B Basic precious and other non-ferrous metals 880 154 .77
C24C Casting of metals 805 184 .39
C25A Structural metal products 955 292 .68
C25B Tanks, reservoirs and containers of metal 421 80 .14
C25D Forging of metal; powder metallurgy 1,628 554 .65
C25E Cutlery, tools and general hardware 1,801 526 .79
C26A Electronic components 1,280 99 .04
C26B Computers 240 12 .10
C26C Communication equipment 396 72 .18
C26E Instruments for measuring, testing and navigation 1,125 34 .07
C26G Optical instruments 236 29 .24
C27A Domestic appliances 708 86 .70
C27B Other electric equipment 1,547 261 .33
C28A General-purpose machinery 1,789 16 .03
C28B Agricultural and forestry machinery 795 136 .05
C28C Metal forming machinery 499 132 .25
C28D Other special-purpose machinery 1,219 315 .10
C29A Motor vehicles 1,139 57 .85
C29B Parts and accessories for motor vehicles 1,365 61 .01
C30A Ships and boats 695 13 .21
C30B Railway locomotives 338 12 .51
C30E Other transport equipment 576 36 .29
C31Z Furniture 1,434 327 .15
C32A Jewellery 695 80 .77
C32B Medical and dental instruments 1,237 131 .23
C32C Other manufacturing 2,046 138 .33
C33Z Repair and installation 2,665 277 .12

All dirty-intensive manufacturing sectors 50,363 8,885 .64

Notes: The table lists, for each manufacturing sector in the estimation sample: (1) the number of distinct
products imported by French firms, (2) the number of distinct products that belong to the subset of “core”
upstream industries, (3) their share in overall imports.
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Table C.7. SMM model parameter estimates

Dirty Clean

βt
0 0.081 0.102

βt
short 0.732 1.311

βt
long 1.190 0.001

βt
cont 0.554 0.703

βt
corr -0.223 0.011

βt
EU 0.710 0.180

βt
TAB 0.003 0.006

βt
Climate 0.015

δt 1.778 1.593
Bi 8.257
AD 0.375

Table C.8. Targeted moments: model and data

Parameter Moment: Share of Sector Model Data

βt

Importers among all firms
Clean 0.309 0.279
Dirty 0.075 0.193

Firms importing from each country
Clean

See Figure 5
Dirty

δt

Importer from most popular country among importers
Clean 0.476 0.596
Dirty 0.332 0.541

Importers among firms with sales below median
Clean 0.070 0.070
Dirty 0.000 0.022

AD Dirty inputs aggregated across firms 0.348 0.367
Bi Firms with sales below data median value 0.908 0.500

Notes: This table presents the data and model moments that are estimated by GMM, as described in
Section 5.3 and Table 2.
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D Additional Figures

Figure D.1. Country-sector variation of CO2 emissions in production in 2004

Notes: This figure plots a heat map of sectoral emissions intensities, measured as tons of CO2 emitted per
1,000 euros of goods produced. The data are sourced from the WIOD’s Environmental Acccounts and Input
Output table.
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Figure D.2. Carbon Prices in the ETS
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Notes: This figure is constructed using the end of month value of the closest carbon futures contract series
sourced from the Intercontinental Exchange, Inc (ICE). Each shaded and non-shaded area represents a phase
of the EU ETS.

Figure D.3. Evolution of firm-level imports from non-ETS countries: Dirty vs. Clean
inputs. Robustness to heterogeneous treatment effects
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Notes: This figure shows the point estimates recovered from the estimation of a log-linear version of
equation (1), using 2005 as the first “treatment” date (1). The model controls for heterogeneous treatment
effects using the estimator in de Chaisemartin and D’Haultfœuille (2020). The underlying equation controls
for product×country and year fixed effects. Standard errors are clustered in the product×country×year
dimension. The confidence intervals are defined at the 95% level. The vertical bars correspond to the
different phases of ETS.
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Figure D.4. Evolution of firm-level imports from non-ETS countries: Dirty vs. Clean
inputs. ETS-regulated versus non-regulated firms
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Notes: This figure shows the point estimates recovered from the estimation of equation (1), using 2005
as the first “treatment” date. The sample of firms is further divided into ETS regulated and not ETS
regulated firms. The treatment group is composed of import flows on dirty inputs sourced in non-ETS
countries. The control group covers clean inputs imports from non-ETS countries. The equation controls
for product×country and year fixed effects. Standard errors are clustered in the product×country×year
dimension. The confidence intervals are defined at the 95% level. The blue areas correspond to Phases 1
and 3 of ETS.
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Figure D.5. Evolution of firm-level imports of dirty inputs, non-ETS vs. ETS origin
countries
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Notes: This figure shows the point estimates recovered from the estimation of equation (1), using 2005 as
the first “treatment” date. The treatment group is composed of imports flows on dirty inputs sourced in non-
ETS countries, with sourcing of dirty inputs from ETS countries taken as control. The equation controls
for product×country and year fixed effects. Standard errors are clustered in the product×country×year
dimension. The confidence intervals are defined at the 95% level. The blue areas correspond to Phases 1
and 3 of ETS. The discontinuity in 2011 corresponds to the year of the change in the declaration threshold
for intra-EU imports.

Figure D.6. Fixed costs and Sourcing potential

(a) Clean (b) Dirty

Notes: This figure plots the median fixed cost to source from a given country generated by the model
against the source country’s estimated sourcing potential for clean inputs in panel (a) and dirty inputs in
panel (b). Data used are from 2004.
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Figure D.7. Country-level taxes

Notes: This figure presents country rates for each input type for ETS (grey labels) and non-ETS countries
(black labels), in the ETS tax and ETS tax + CBAM tariff scenarios. Based on authors’ calculations using
data from WIOD’s sector-level emissions + WIOD IO tables.

Figure D.8. Country-level taxes when taxing all dirty inputs using ETS coverage

Notes: This figure presents country rates for each input type for ETS (grey labels) and non-ETS countries
(black labels), in the ETS tax + CBAM tariff, vs and ETS tax + ETS tariff scenarios. The baseline CBAM
tariff scenario uses the CBAM coverage displayed in Table C.2. The ETS tariff scenario applies the same
coverage displayed in Table C.1 to both ETS and non-ETS countries. Based on authors’ calculations using
data from WIOD’s sector-level emissions + WIOD IO tables.
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Figure D.9. Country-level taxes when taxing all emissions

Notes: This figure presents country rates for each input type for ETS (grey labels) and non-ETS countries
(black labels), in the ETS tax + CBAM tariff, compared with a scenario in which the sectoral coverage is
uniform and all emissions are taxed. Based on authors’ calculations using data from WIOD’s sector-level
emissions + WIOD IO tables.

Figure D.10. The geography of leakage: 23 other countries

(a) Import leakage (b) Emissions leakage

Notes: This figure plots the change in imports in millions of euros (panel (a)) and in emissions in millions
of tons (panel (b)) when imposing the carbon tax, and then both the carbon tax and tariff. We plot a subset
of 23 countries.
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Figure D.11. The geography of leakage: by input

(a) Import leakage (b) Emissions leakage

Notes: This figure plots the change in imports in millions of euros (panel (a)) and in emissions in millions
of tons (panel (b)) when imposing the carbon tax, and then both the carbon tax and tariff. We plot a subset
of 5 countries for which the change is substantial, and divide the change by input type.
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